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The gauge-natural bilinear brackets
on couples of linear vector fields
and linear p-forms

ABSTRACT. We give complete description of all gauge-natural bilinear opera-
tors A transforming pairs of couples of linear vector fields and linear p-forms
on a vector bundle F into couples of linear vector fields and linear p-forms on
FE and satisfying the Jacobi identity in Leibniz form.

1. Introduction. All manifolds considered in the paper are assumed to
be Hausdorff, second countable, finite dimensional, without boundary, and
smooth (of class C*°). Maps between manifolds are assumed to be C*°.

A vector field X on a vector bundle F is called linear if £; X = 0, where
L is the Lie derivative and L is the Euler vector field. A p-form w on a
vector bundle E is called linear if Lrw = w.

Let VB, be the category of n-rank vector bundles with m-dimensional
bases and their vector bundle isomorphism onto images.

A VB,, n-gauge-natural bilinear operator (bracket)

A:FZ<T@;\T*> xFl(T@/P\T*) wFl<T@/p\T*>
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is invariant with respect to morphisms of VB,, , family of R-bilinear oper-
ators

p p p
A F%(TE@/\T*E) x FZE(TE@/\T*E) - rlE(TE@/\T*E>

for all VB,, ,-objects E, where F%(TE ® AP T*E) is the space of couples
X @® w of linear vector fields X and linear p-forms w on FE.
The first main result of the article is the following theorem.

Theorem 1.1. Let m,n,p be positive integers such that m > p+ 1. Any
VB n-gauge-natural bilinear operator

A FZ(T@;\T*) x FZ(T@/P\T*) - Fl<T@/p\T*>
is of the form
O AX'ow!, X2 @ w?) = a[X, XY @ {1 Lx10w? + oL x2w?
+ b3di x1w? + bydi 2wt + bsLx1dipw? + b L x2dipw'}
for arbitrary (uniquely determined by A) real numbers a, by, by, bs, ba, bs, be,
where [—, —] is the usual bracket on vector fields, L is the Lie derivative,

d is the exterior derivative, © is the insertion derivative and L is the FEuler
vector field.

A VB,, n-gauge-natural R-bilinear operator A satisfies the Jacobi identity
in Leibniz form if
(2) AWt A2 %) = A(A(W' v?),0°) + AW A, v?))
for any v' € I'oy(TE & AP T*E) for i = 1,2, 3.

The second main result of the article is the following theorem
Theorem 1.2. Let m,n,p be positive integers such that m > p+ 2. Any
VB n-gauge-natural R-bilinear operator A of the form (1) satisfies the Ja-
cobi identity in Leibniz form if and only if the T-tuple (a, by, b, b3, by, bs, bg)
s from the following list of 7-tuples:

(c,0,0,0,0,c,0), (c0,0,0,0,c,—c),
(¢,c,0,0,0,—c¢,0), (¢,¢,—¢,0,0,—c,c),
(3) (c,0,0,0,0,0,0), (cc0,0,0,0,0),
(¢,c,0,0,0,0,—c), (¢,¢,—¢,0,0,0,0),
(c,c,—c,0,c— A, 0,X), (0,0,0,\, p, =\, —p),
where ¢, A\, b are arbitrary real numbers with ¢ # 0.

The above Theorems 1.1 and 1.2 for p = 1 are proved in [2]. If p = 1, the
most important example of a VB, ,-gauge-natural R-bilinear operator sat-
isfying the Jacobi identity in Leibniz form is the Dorfman—Courant bracket
being the restriction of the well-known Courant bracket.
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2. The gauge-natural bilinear brackets on couples of linear vector
fields and linear p-forms. Let m,n,p be positive integers.

Let E = (E — M) be a vector bundle from VB, ,,.

Applying the tangent and the cotangent functors, we obtain double vector
bundles (T'E; E,TM;M) and (T*E; E, E*; M).

A vector field X on F is called linear if it is a vector bundle map X :
E — TFE between £ - M and TE — TM.

Equivalently, a vector field X on FE is linear if it has the expression

m

. o n )
1 ko1
X = Zaz(x ,...,xm)axi + Z b (x ,...mm)yja—yk
i=1 k=1
in any local vector bundle trivialization z',...,z™,y',...,y" on E.

Equivalently, a vector field X on F is linear iff L1, X = 0, where £ denotes
the Lie derivative and L is the Euler vector field on E (in vector bundle
coordinates L =37, Y’ aiyj)'

Equivalently, a vector field X on FE is linear if (a;).X = X for any ¢t > 0,
where a; : F — E is the fibre-homothety by t.

A p-form w on F is called linear if the induced vector bundle morphism

w': &"'TE - T*E

over the identity on F is also a vector bundle morphism over a map &*~ 1T M
— E* on the other side of the double vector bundle.
Equivalently, a p-form w on F is linear if it has the expression

w= Z Qi ... ip,j (x)yjdxil/\. . ./\dxi”—{—z bihm’ip_l,j(x)dyj/\dxil/\. Azt

in any local vector bundle trivialization z',...,z™,y',...,y" on E.
Equivalently, a p-form w on F is linear iff Lrw = w.

Equivalently, a p-form w on E is linear iff (a1).w = tw for any ¢ > 0.
t

We have the following definition being modification of the general one
from [1].

Definition 2.1. A VB, ,-gauge-natural bilinear operator (bracket)

p p p
A Pl<TEB/\T*> X FZ(T@/\T*) - F’(T@/\T*)
is a VB, p-invariant family of R-bilinear operators
p p p
A FZE<TE ® /\T*E) x Tl (TE ® /\T*E) - FZE(TE ® /\T*E)

for all VB, ,-objects E, where I'',(TE & A\’ T*E) is the vector space of
linear sections of TE & \P T*E.
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Remark 2.2. The VB,, ,-invariance of A means that if

p p
(X' ow!, X2 w?) € rlE<TE @ /\TE) x Tl (TE ® /\TE)

and
p p
vl sl 72 2 L (7 « T L (7 * T
(X' 0w", X" 0u?) e h(TEe \TE) x T (TEe \T'E)

are ¢-related by an VB, ,-map ¢ @ E — E (ie., X' o ¢ =Tyo X" and
wop=APT*pouw for i =1,2), then so are A(X' @ w', X2 ® w?) and
AX 0@, X o w?).

Remark 2.3. Quite similarly, we can define VB,, ,,-gauge-natural bilinear

operators

YT x TYT) ~ TYT),

3

P P
r(AT) x T (A\T7) - T (A\T7).
For example, a VB,, ,-gauge-natural bilinear operator

P
A:TYT) x T (/\T) w TU(T)
is a VB, p-invariant family of R-bilinear operators
p
A:TL(TE) x T, (/\ T*E) & TL(TE)

for all VBB,, ,-objects E, where I';,(TE) is the space of linear vector fields
on E and ', (AP T*E) is the space of linear p-forms on E.
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Example 2.4. The usual bracket [X, Y] of (linear) vector fields X and Y
is again a linear vector field. Thus we have the corresponding VB, ,,-gauge-
natural bilinear operator

[—, =] : TYT) x TYT) ~ TXT).

Example 2.5. The Lie derivative Lxw of a linear p-form w with respect
to a linear vector field X is again a linear p-form. Thus we have the corre-
sponding VB,, ,-gauge-natural bilinear operator

p P
£:TYT) % r’(/\T*) - r’(/\T*) .

Example 2.6. Let w be a linear p-form and X be a linear vector field on a

vector bundle F. Then ixdw, where d denotes the exterior derivative and

i(—) denotes the insertion derivative, is again a linear p-form. Thus we have
the corresponding VB, ,-gauge-natural bilinear operator

P P
id: (@) x T(AT) - T (\T7).

Example 2.7. Let w be a linear p-form and X be a linear vector field on a

vector bundle £ and L denotes the Euler vector field on £. Then Lxdiyw, is

again a linear p-form. Thus we have the corresponding VB, ,-gauge-natural
bilinear operator

P P
Ldig : TYT) x T (/\T) w T (/\T) .
Example 2.8. The bracket
[X!'ow!, X2 @ w?) = (X1, X2 @ (Lx1w? — ixedw)
is a VB, n-gauge-natural bilinear operator in the sense of Definition 2.1.

Lemma 2.9. Any VB, ,-gauge-natural bilinear operator A in the sense
of Definition 2.1 can be considered (in obvious way) as the system A =
(AL, A2, ... A®) of VB n-gauge natural bilinear operators

Al THT) x THT) ~ TY(T),

A2 TYT) x TYT) ~ rl<;\T*) ,
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A5 Fl(;\T*> % T(T) ~= Fl</p\T*),

AT rl(/\T*) X rl(/p\T*> w TUT),
A8 rl(/p\T*) X rl(/p\T*) wrl(/p\T*).

Proof. The lemma is obvious. OJ

In the rest of the present section we prove Theorem 1.1, i.e., the following.

Theorem 2.10. Let m and n > 1 and p > 1 be natural numbers such that
m > p+ 1. Any VB, n-gauge-natural bilinear operator

A:r(ro A7) x0T AT7) - 110 AT)
is of the form
AXTow!, X2ow?) =a[ X, X2 @ {b1Lx10* + bo L 2w + badi x10°
+ bydi 2w + b5 Lyrdipw?® + b Lyadipw'}
for arbitrary (uniquely determined by A) real numbers a, by, ba, bs, by, bs, be.

Proof. Because of Lemma 2.9, our theorem is a immediate consequence of
Lemmas 2.11-2.18, below. ([l

Lemma 2.11. Let m > 2 and n > 1 be integers. Any VB, n-gauge-natural
bilinear operator

AL TYT) x THT) ~ TYT)
is the constant multiple of the usual bracket [—, —] on (linear) vector fields.
Proof. It is Proposition 2.15 in [2]. O

Lemma 2.12. Let m,n,p be positive integers. Any VB, n-gauge-natural
(not necessarily bilinear) operator

A2 TU(T) x DY(T) ~ Fl<;\T*)
15 0.

Proof. Using the invariance of A? with respect to the fiber homotheties
we get A%(X, X1) = tA?(X, X1) for any linear vector fields X and X; on a
VBm.n-object E and any ¢t > 0. Then A% = 0. 0

Lemma 2.13. Let m,n,p be positive integers. Any VB, n-gauge-natural
bilinear operator

A3 Y(T) x T (/P\T> —~ T(T)
15 0.
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Proof. Using the invariance of A with respect to the fiber homotheties we
get A3(X,tw) = A3(X,w) for any linear vector field X and any linear p-form
w on a VB, n-object E and any ¢ > 0. Then, by the bi-linearity of A3, we
get tA3(X,w) = A3(X,w), and then A3(X,w) =0, i.e., A3 = 0. O

Lemma 2.14. Let m and n > 1 and p > 1 be natural numbers such that
m > p+ 1. Any VB, n-gauge-natural bilinear operator

AL TU(T) x rl</p\T*) - rl</p\T*)
s of the form
AN X, w) = MLxw + \aixdw + ALy digw
for the (uniquely determined by A*) real numbers A1, Ao, A3.

Proof. Clearly, A* is determined by the values iy, ... iXpA4(X,w)|u €eR
for all VB, objects m : E— M, all points v € E,, all z € M, all vectors
X1,...,Xp, € T,F and all linear vector fields X on E, where iy is the
insertion derivative.

Since m > p+ 1 and n > 1, we can assume that u # 0 and that T'r o
Xpu, Tm(X1), ..., Tm(Xp) are linearly independent. Then, using the VB, -
invariance of A% and the vector bundle version of the Frobenius theorem, we
can write E = R"™" and M = R™ and z = 0 and u = ¢; = (1,0,...,0) €
R" and X = 6%1 and X; = 927 |u and ... and X, = # Further,

by the linearity of A4(a%1,w) in w and the linearity of w, using the Peetre

|u’

theorem, we may additionally assume that w = z%yFdz™ A ... A dz' or
w = 2Pdyt Adax?t AL A dadt) where a = (al,...,a™) € (N U{0})™
and 8 = (B%,...,8™) € NU{OH)™ and 1 < i < ... < i, < m and
1 <ji1 <...<jp1 <mandk,l € {1,...,n}, where (of course) z“ =
(x1>a1 . . (xm)am.
In the case of
w = z®yFdz A .. A dz?

(as above), by the invariance of A with respect to the homotheties

1, 1 L1, 1
(11‘ ,...,T—mzxm,y,fy,... —y"

T t "t
for positive numbers 71, ..., 7™ and t and the bi-linearity of A%, we get
o0t pagin. STy .iXpA4(X,w)|u =7l Py .iXpA4(X,w)‘u,

where 0f is the Cronecker delta. So, if iy, ... ix,AY(X,w)}, # 0, then

w=ylaldat A ANdzt A LA deP T

for some i = 1,...,p+ 1, where @ means that a is dropped.
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Similarly, in the case of
w=zldy' Ndzt A LA dader
if in cee iXpA4(X7w)\u 75 0, then

w=zaldy* Nde* A Adz AL A Ndzl2 A LA daP

for some [; and Iy with 1 <} <ls <p+ 1.

Let 3 <i < p+ 1. Using the invariance of A* with respect to the VB, -
map sending coordinate x! into 22 (and vice-versa) and preserving other
coordinates, one can easily see that iy, ...ix, A*(X,w)), with

w=y'zldzt A AdEE A LA daPT

is equal (modulo signum) to ix, ...ix, A(X,w), with w = y'z?dz! A dz® A
o AdzPrL

Let 3 < Iy < p+1. Using the invariance of A% with respect to the VB, .-
map sending coordinate z'2 into x? (and vice-versa) and preserving other
coordinates, one can see that ix, ...ix,A*(X,w)), with

w=z'22dy Nda? AL ANdat2 AL A dgPT

is equal (modulo signum) to ix; ...ix,A*(X,w)), with w = z'a?dy* A dz® A
o AdzPtL
Let 2 <y <ly < m. Then

. 1 Ii—1 .1 l1,.0 141 1 —1
o= (zt, ..., 2l pphigle gt ™ot ™)

is a VB, »,-map over some neighborhood of 0 € R™ and it preserves X, X1,
..., Xp,u and sends

Oi=aldy' Adz' AL Ada AL Adat AL A daP T
into - -
o+ ahaldy Adat AL Adab AL A dZl2 AL A daPT
Then using the invariance of A* with respect to ¢, from iy, ...ix, A*(X, O)u
=0, we get ix, ...ix,A*(X,w), = 0 for

wi=a"z2dyt Adat A AdEh AL A dte AL A daP T

Summing up, we have shown that A* is determined by three real numbers
ix, .- .z'XpA4(X, wa)|y for a =1,2,3, where wy := yratde? A ... AdaxPt! and
wy 1= ylz?det AdaP AL A dePT and ws = alaldy! Adad AL A daP T
(w1 == y'zldz? and wy := y'2?dz! and w3 = x'2%dy! if p = 1) and where
u=-e = (1,0,...,0) € R" and X = -2 and X; = and ... and

ox1
_ _ 0
XP - Oxpt+1 |u

Thus the vector space of all A* (in question) is of dimension not more
than 3.

_0_
Ox2 |u
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On the other hand, the collection of VB, ,-gauge natural operators E' :
THT) x THAPT™) ~ TYAPT*) for i = 1,2,3 given by E'(X,w) = Lxw,
F?(X,w) = ixdw and E3(X,w) = Lxdijw is R-linearly independent. In-
deed, it follows easily from

El(@ 1,yldm /\wo)
E2<8 7Y Lt /\wo) e1) = —de,y' A@o(er),
E3<a$1,y1d:): /\wo)
(9
E <@ zldy? /\wo) (e1) = deyy* N@o(er),
0
E2(@ 1dy /\wo) (e1) —dely A @o(e1) ,
0
E3<@,x1dy1 A wo) (e1) = deyy N Dole1),
0
E! <@, (zh)2dy* A wo) (e1) =0,
2 O 1\27, 1 o ~
E (%,(:p )dy /\wo)(el) =0,
0 - -
ES(@ (zh)2dy* A wo> (e1) = 2de,z' A @oler),
where @, 1= dz® A ... AdxP (if p = 1, w, := 1) and e; = (1,0...,0) €
(Rm,n)o‘
Now, the lemma is complete because of the dimension argument. O

Lemma 2.15. Let m,n,p be positive integers. Any VB, n-gauge-natural
bilinear operator

p
A5 T (/\ T*) x T/(T) ~ T\(T)

15 0.

Proof. It is sufficient to apply Lemma 2.13 for A3(X,w) := A%(w, X). O

Lemma 2.16. Let m andn > 1 and p > 1 be natural numbers such that
m > p+ 1. Any VB, n-gauge-natural bilinear operator

A5 . Fl</p\T*) % TU(T) ~ Fl</p\T*>
is of the form
Aﬁ(w, X)=mLxw+ poixdw + psLxdipw
for the (uniquely determined by A®) real numbers i1, uz, us.
Proof. It is sufficient to apply Lemma 2.14 for A*(X,w) := A%(w, X). O
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Lemma 2.17. Any VB, n-gauge-natural bilinear operator

P P

AT r’(/\T*) X r’(/\T*) « TY(T)
15 0.
Proof. Using the invariance of A7 with respect to the fiber homotheties
we get A7(tw,tw;) = A"(w,w;) for any linear p-forms w and w; on a
VBn-object E and any t > 0. Then, by bi-linearity of A7, t?A7(w,w;) =
AT(w,w1), ie. AT=0. O

Lemma 2.18. Any VB,, ,-gauge-natural bilinear operator

P P P

a5 (AT) < T (AT) ~ T (AT
15 0.
Proof. Using the invariance of A® with respect to the fiber homotheties
we get AS(tw,tw;) = tA8(w,wi) for any linear p-forms w and w; on a
VBn-object E and any ¢ > 0. Then, by bi-linearity of A%, t248(w,w;) =
tA¥(w,w), ie. A% =0. O

3. The gauge-natural bilinear brackets on couples of linear vector
fields and linear p-forms with the Jacobi identity in Leibniz form.
A VB,, n-gauge-natural R-bilinear operator A satisfies the Jacobi identity
in Leibniz form if

(5) AW AW 0)) = A(AW, v2), %) + AP, A, %))
for any v' € I, (TE ® \P T*E) for i = 1,2, 3.
We are going to prove Theorem 1.2, i.e., the following theorem.

Theorem 3.1. Let m,n,p be positive integers such that m > p+ 2. Any
VB.n-gauge-natural R-bilinear operator A of the form (4) satisfies the Ja-
cobi identity in Leibniz form if and only if the 7-tuple (a, by, be, b3, by, bs, bg)
is from the following list of 7-tuples:

(¢,0,0,0,0,¢,0), (c0,0,0,0,¢c,—c),
(¢,c,0,0,0,—¢,0), (c,c,—c,0,0,—c,c),
(6) (¢,0,0,0,0,0,0), (c,¢,0,0,0,0,0),
(¢,c,0,0,0,0,—c¢), (¢,c,—c,0,0,0,0),
(c,c,—c,0,c— X\, 0,A), (0,0,0,A, 1, —A, —p),
where ¢, \, i are arbitrary real numbers with ¢ # 0.

The above Theorem 3.1 for p = 1 is proved in [2]. So, to prove Theo-
rem 3.1 it is sufficient to prove the following two propositions.
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Proposition 3.2. Let m,n,p be positive integers such that m > p+ 2 and
p > 2. Let (a,b1,...,bs) be a T-tuple such that the VB, n-gauge-natural
bilinear operator A given by (4) satisfies the Jacobi identity in Leibniz form.
Then the VBs ,,-gauge-natural bilinear operator
A TYT & T x THT & T*) ~ THT & T%)

given by
A X pw!, X? @ w?) = a[X, XY @ {b1Lx10? + boLyawt

+ bgdinoJZ + b4diX2w1 + b5£X1diLw2 + bﬁﬁdeiLwl}

(7)

satisfies the Jacobi identity in Leibniz form, too.

Proposition 3.3. Let (a,by,...,bs) be from the list (6). Then the VB, n-
gauge-natural bilinear operator A given by (4) satisfies the Jacobi identity
in Leibniz form.

The proofs of the above two propositions will occupy the rest of the paper.
From now on, let R"™" be the trivial vector bundle over R with the

standard fibre R™ and let 2!, ..., 2™, y',...,y" be the usual coordinates on
R™"

We can write R™" = R3" x R™73. Then z!,22, 23, y',...,y" are the
usual coordinates on R®" and z%,...,2™ are the usual coordinates on
Rm—3

Given a linear section v = X @& w of TR?*" @ T*R3"™ — R3" we have a
linear section
Vv = X7 @ w?
of TR™" @ AP T*R™" — R™", where X7 := X x 0 and w¥ 1= w A w,,
where 0 is the zero vector field on R™ 3 and w, := dz* A ... A daP*2 is the
(p — 1)-form on R™™3 (and where we do not indicate the pullbacks with
respect to respective projections).

Lemma 3.4. Let A and A° be as in Proposition 3.2. We have
A(WH, ()7) = (A v?)*

for any linear sections v* = X'®w! and v? = X?2@w? of TR3"@T*R3"™ —
R3™,

Proof. It follows immediately from the formulas:
(X7, (X)) = (X, XP)7,
ﬁ()@)#(WQ)# = (ﬁxlwz)#,
dix 1y (W) = (dix10?)T
# = (Lxrdipw?®)* .

These formulas are easy to verify. |

E(X1)#diL(w2)
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Now, we are in position to prove Proposition 3.2.

Proof. By Lemma 3.4, for any linear sections v! and v? and v® of TR3" @
T*R>" — R3" we have:

(A°(vt, A2, 0)))F = AP, A7, (V)7)),
(A°(A° (!, %), %)) " = A(A((HF, ()7), (r)F),
(A2, A2 ) F = AP, AP, (9)7)).
Then using the Jacobi identity in Leibniz form (5) of A we get
(A°(vt, A2 (2, 02)))F = (A°(A° (W', %), %)) 7 + (A°(v2, A (v, v?)))
4+ to both sides of the last equality) we

)#

Hence (applying i 2k -0y
get,
A%Vt A° (V2 03)) = A°(A°(Vh, V%), v3) + A° (L2, A0Vt ).
Then, since A° is VB3 j,-invariant, A satisfies the Jacobi identity in Leibniz
form.
The proof of Proposition 3.2 is complete. O

In the proof of Proposition 3.3 we will use the following well-known for-
mulas:

(8) LxLyw—LyLxw=LixyW,
(9) ixLyw— Lyixw = i[x,yw,
(10) ixdw +dixw = Lxw,
(11) dlxw = Lxdw,

where X, Y are vector fields and w is a p-form on a manifold M.
We will also use some formulas from the following lemma.

Lemma 3.5. For any linear vector field X and any linear p-form w on a
vector bundle E, we have:

(12) irLxw = Lxirw,
(13) dipLxw = Lxdijw=dipLxdijw,
(14) dirdixw = dixw,

where L is the Euler vector field on E.

Proof. By the well-known formula (9) and the condition [L, X] =0 (as X
is linear), we get (12) (also for not necessarily linear w). Now, using the
well-known formula (11), we get

dirLxw=dLxijw = Lxdirw.
Then, replacing w by dipw, we get

dirLxdipw = Lxdirdifw .
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Further, using the well-known formula (10) (for X = L) and the condition
Liw = w (as w is linear) and the obvious formula iyi; = 0, we get

digdipw =dipLrw=dijw.
Then
diLﬁxdiLw = ﬁxdiLdiLw = ﬁXdiLw .

Further, by the formula (10) (for X = L) and the well-known formula dd = 0
and the formula (11) (for X = L) and the condition (12), we get

dirdixw = Lrdixw =dixLiw = dixw

as w is linear.
The proof of Lemma 3.5 is complete. O

We will also apply the following lemma.

Lemma 3.6. Let (a,by,...,bs) be a T-tuple of real numbers. If A given by
(4) satisfies the system consisting of conditions

(15) (b2,b1) = (0,0) or (be,b1) = (0,a) or (be,b1) = (—a,a),

b1 Lx1{bsdix2w? + bs L x2dirw®}
+ bydix1{b1 L x2w? + b3dix2w® + b5 L x2dipw®}
+ bsLx1dip {b1 L x2w? + b3di 20 + bsLy2dipw’}
(16) = badigx1 x2w® + bsLopx1 x2ydipw®
+ b1 Lx2{bsdix1w® + bsLx1dipw®}
4 bydix2 {b1 L x1w> + b3dix1w> + bsLx1dipw®}
+ bsLx2dip {b1 L x1w® + badix1w® + bsLx1dipw’},

b1 Lx1 {bydi xsw? + b L xsdipw?}
+ bydix1 {bo L x3w? + bydi xsw? + bg L xsdirw?®}
+ bsLx1dip {boLxsw? + bydixsw? + b L xsdipw?}
(17) = boLya{bsdix1w?® + bsLx1dipw?}
+ bydi 3 {b1 L x1w? + badix1w? + bs L x1dipw?}
+ beLxsdip {b1 L x1w? + badix1w? + b5 L x1dipw?}

+ b4dia[X1,X3]w2 + b6£a[X1,X3]diLw2 ,
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badiyx2 x3jw" + beLopx2, x3diLw'
= by L ys {bsdix2w" + bgL x2dipw'}
+ bydixs {ba L xow! + bydixow' + bgLx2dipw'}
(18) + beLxsdip {boL 2wt + bydi 2w’ + b L x2dipw'}
+ b1 Lx2{bsdixsw! + beLysdipw'}
+ bydix2{ba L x3w' + bydixsw' + bgLysdipw'}
+ bs Ly dip {boLxsw' + badixsw' 4 bgLysdipw'}

for all linear vector fields X', X2, X3 and all linear p-forms w',w?,w?® on

E, then A satisfies the Jacobi identity in Leibniz form.

Proof. Since by, by and a satisfy (15), then using formula (8), we get
(19) biLy1 Lx2w® = bralix x2w® + b Ly2Ly1w®

for all linear X!, X2, w3, and

(20) bi1baLx1 Lysw® = bab1 Lxs Lxiw® + baaLlpx: xaw

for all linear X!, X3 w?, and

(21) baaLlxz xsw' = b3LxsLx2w' + bibaL 2 Lyaw!

for all linear X2, X3, w!.
Then applying (16) and (17) and (18) we get

b1Lx1{b1 L x2w + badi 20 + b5 L y2dipw?}
+ bydi x1{b1 L x2w> + badix2w® + bs L x2dipw®}
+ bsLx1dip {b1 L x2w? + b3di x2w® 4 bs L y2dipw’}
(22) = b1 Lopxt x21w® + bydigpxt x21w® + b5 Lopxt xoydipw?
+ b1 Ly2{b1Lx10® 4 bsdix1w® + bs Lx1dipw?}
+ bydix2 {b1 L x1w> + b3dix1w> + bs Lx1dipw®}
+ bsLx2dip {b1 L x1w® + badix1w® + bsLx1digw’},

b1 Lx1{boLxsw? + bydiysw? + b L xsdipw?}
+ bydix1{ba L x3w? + bydixsw? + bg L xsdipw?®}
+ bsLx1dip {boLxsw? + bydi xsw? + b L xsdipw?}
(23) = boLys{b1 Lx1w? + b3dix1w? + bsLxrdipw?}
+ bydi x3{b1 L x1w? + badix1w? + bsLx1dipw?}
+ beLysdip {b1Lx1w> + b3dix1w® + bsLy1digw?}

+ b2£a[X1,X3]w2 + b4d7;a[X1,X3]w2 + bﬁﬁa[X17X3]dZ‘Lw2 ,



The gauge-natural bilinear brackets... 87

baLy(x2 x3)w" + badigpxz x3w" 4 beLoxz, x3dirw’
= by L 3 {baLyow! + bydi 2w + b L x2difw'}
+ bydi s {ba L 2w 4 bydiyow! 4 b Lx2dipwt}
(24) + b6 L xsdip {boL 2wt + bydi 2wt + b L xadipw'}
+ b1 L x2{bo L xsw® + bydiysw' + b L ysdipw'}
+ badi 2 {ba L ysw! + bydiysw! + beLysdipw'}
+ bsLyadip {boLxsw' + bydi ysw' + bgLysdipw'}

for any linear vector fields X', X2, X3 and any linear p-forms w', w?, w?

on E.
Adding equalities (22) and (23) and (24) we get

(25) N=0+T,
where
Q= b1 Lx1{b1 Ly2w? + boL xsw? + bydix2w® + bydi ysw?
+ bsLxadipw® + be Ladirw®} + baLyx2 xaw' + badiyi {b1 £ x2w®
+ bo L xsw? + badi 2w + bydi xsw? + by L xadipw® + bgLxsdirw?®}
+ badigpxz x3w' + bsLx1dip {b1 Lx2w® + byLxsw® + bdi xow®
+ badiysw® + bs Lx2dipw® + be Lyadipw®} + bgLopx2 xaydipw'

O = b1Lyx1 x2w” + baLys{b1 Lx1w” + baLxaw' + badiyiw?
+ badiy2w' + bsLxrdipw® 4 beLzdipw'} + badigxr x2jw®
+ bydixs {b1 L x1w? + ba L x2w + badi x1w? 4 bydi yow! 4 bs L1 dipw?
+ bgLxadipw'} + b5 Loyt x2dipw® + beLxadip{b1Lx1w” + ba L2’
+ bydix1w? 4 bydi 2w + bsLxrdipw?® + bgLx2dipw'}

T = b1 Lx2{b1 L 10> + bo L ysw! + b3dix1w® + bydi xsw?
+ bsLxrdipw® 4+ beLyadirw'} + baLyxr xayw? + badix2{b1 Lx10°
+ bo L ysw! + badix1w® + bydixsw' + bsLx1dipw® + bgLysdirw'}
+ badigx1 x3w” + bsLedip {b1 Lx10° + by Lysw' + bdix1w®
+ badiysdw' 4+ bsLx1dipw® + b Lyadirw'} + bgLox1 xadipw®.
On the other hand, we can see that
AXYAX?P Wt XPow?) =X [ X3 XY eq,
AAXT oW, X290 w?), X3 o w’) =X, X7, X% 30,
AX? o AX e, X3 W) = (X3 (XL X3 T .
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Then A satisfies the Jacobi identity in Leibniz form. The proof of Lemma 3.6
is complete. O

Now, we are in position to prove Proposition 3.3.

Proof. Let (a,b1,be, b3, by, bs,bs) be a arbitrary 7-tuple from the list (6).
Let A be given by (4). We are going to show that A satisfies the Ja-
cobi identity in Leibniz form. By Lemma 3.6, it is sufficient to show that

(a, b1, ba, b3, by, bs, bg) satisfies conditions (15)—(18) for all linear vector fields

X1 X2 X3 and all linear p-forms w', w?,w? on E. But one can easily di-

rectly observe that such 7-tuple satisfies (15). So, it remains to show that
it satisfies (16)—(18).
We consider several cases.

Case 1. (a,by,ba, b3, by, bs,bs) = (a,0,0,0,0,0,0) and a = ¢ # 0.
The equalities (16)—(18) hold. They are 0 = 0.

Case 2. (a,by,ba,bs,bys,b5,b6) = (a,a,0,0,0,0,0) and a = ¢ # 0.
The equalities (16)—(18) hold. They are 0 = 0.

Case 3. (a,by,ba, b3, by, bs,bs) = (a,0,0,0,0,a,0) and a = ¢ # 0.
The equalities (17) and (18) hold as they are 0 = 0. Further, using (13),
condition (16) is

a2EX1£X2diLUJ3 = a2£[X1,Xz]diLw3 + a2£X2£X1diLw3 .
It holds because of the well-known formula (8).

Case 4. (a,by,ba, b3, by, bs,b6) = (a,a,—a,0,0,0,0) and a = ¢ # 0.
The equalities (16)—(18) hold as they are 0 = 0.

Case 5. (a,by,ba, b3, by, bs,bs) = (a,0,0,0,0,a,—a) and a = ¢ # 0.
Using (13), we can see that conditions (16)-(18) are

a’Lx1 Lxzdipw® = a® Ly xodigw® + a®Lx2 Lyadigw?
—a?Ly1 Lysdipw?® = —a’LysLyidipw?® — a2£[X1,X3}diLw2,
—azﬁ[xz’Xs]diLwl = a’LysLyedipw' —a®Ly2Lysdipw’ .
They hold because of the well-known formula (8).

Case 6. (a,by,ba, b3, by,bs,bs) = (a,a,0,0,0,0,—a) and a = ¢ # 0.
The equality (16) holds as it is 0 = 0. Further, using (13), conditions
(17) and (18) are

—a’Ly1 Lysdipw?® = —a’LysLxrdipw? — a’Liy1 ysidipw?
X1AX X3kX [X1,X3] )
—azﬁ[ngs]dZ.Lwl = a2£X3£X2diLw1 — a2£X2£X3diLw1 .

They hold because of the well-known formula (8).
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Case 7. (a,by,ba, b3, by, bs,bs) = (a,a,0,0,0,—a,0) and a = ¢ # 0.
The conditions (17) and (18) are satisfied as they are 0 = 0. Further,
using (13), equality (16) is

— a’ L1 Lxzdipw® — a’ L1 Lyadipw® + a® L1 L2 dipw®
= —a2£[X17X2]diLw3 —a?Ly2Ly1dipw® — a? L2 Lyrdipw?
+a’Ly2Ly1dipw?
or (after reduction)
—a?Lx1 Lx2dipw’ = —a2£[X17X2}diLw3 —a®Ly2Lyrdipw® .
It holds because of the well-known formula (8).

Case 8. (a,by,ba, b3, by, bs,bs) = (a,a,—a,0,0,—a,a) and a = ¢ # 0.
Using (13), equality (16) is

— a2£X1£X2diLw3 — aQEXlﬁxzding + a2£X1£X2diLw3
= —a2£[X17x2]d’L.Lw3 — a2£X2ﬁxld’iLw3 — a2£X2ﬁxld’iLw3
+ a2ﬁx2ﬁxld’iLw3
or (after reduction)
—a’Lx1 Lyzdipw® = —a’Lix1 xodipw® — a* L2 Lxrdipw® .
Similarly, (17) is
a’Lx1Lysdipw?® + a? L1 Lysdipw? — a>Lx1 Lxsdipw?
= a’LysLyrdipw® + a’LysLxrdipw?® — a®Lxs Lyrdipw?
+ (IZ,C[leXs]dZ'Lw2
or (after reduction)
CLQAC)(I ﬁXSdiLWQ = CL2£)(3£X1 diL(UQ + a2£[X17X3]diLw2 .
Similarly, (18) is
’L dipw' = — a*LxsLy2dipw' — a®Lxs Ly2dipw'
a [XZ’)(S] LW = a L3kl x2at;w a L3l x2dat;w
+ a2[,X3£X2diLw1 + a2[,X2£X3diLw1
+ azﬁx2ﬁx3diLw1 - azﬁx2ﬁx3diLw1
or (after reduction)
’L dipw' = —a*LysLyedipw' + a*Ly2Lysdipw’
a”Lxz2 x3)0ipw = —a"LxsLx2dipw +a“Lx2Lxsdipw .

So, (16)—(18) hold because of the well-known formula (8).
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Case 9. (a, by, ba, b3, by, bs,b6) = (a,a,—a,0,a — A\,0,\) and a = ¢ # 0.
Condition (16) holds as it is 0 = 0. Using (13), condition (17) is
ala — N Lyrdiysw? + a Ly Lysdipw? = (a — Nadiys £y1w?

+ )\aﬁxsﬁdeiLWQ + (a — )\)adi[Xng}wQ + )\aE[X1’X3]diLw2 .
Then, using formulas (8) and (11), condition (17) is
ala — N)dLx1ixsw? = (a — NadiysLx1w? + (a — )\)adi[Xl’Xs]wQ .

Then (17) holds because of the well-known formula (9).
Using (13) and the well-known-formula (11), we can see that (18) is
(a— )\)adi[szXs]wl + )\aﬁ[X;Xs]diLwl
= —(a — NadL ysix2w' — a\L s Lyadifw®
— (a — NadixsLx2w' + (a — \)2dixsdix2w!
+ (@ — M MdixsLyedipw' — Mal xsLyadipw!
+ Ma — N Lysdipdiyew' + N2 LysLyadipw!
+ a(a — )\)dﬁxfl.XBwl + CL)\EX2ﬁx3diLwl .
So, to prove that (18) holds, it remains to show that the coefficients on \*
of both sides of (26) are equal (for £k =0, 1, 2).
Comparing the coefficients on \° in (26), we have
azdi[X27X31w1 = — a2d£X3iX2w1 - CLZdixs,CXle
+ a2diX3diX2w1 + a2dﬁx2ix3w1 .
This condition holds because
= —dﬁXS’L.X? - dixi‘sﬁxz + d’Lx3dZX2 + dﬁx2iX3
as dlx3dZX2 = d(des + Zx3d)’tx2 = dﬁXSix2.
Comparing the coefficients on A in (26) and using the well-known formula
(11), we have
- adi[Xz’Xs]wl + a[,[Xz?Xs]diLwl
(27) = a£X3d’iX2w1 — a£X3£X2diLw1 + adiX3£X2w1
— 2adiX3diX2w1 + adiX3£X2diLw1 - a£X3ﬁx2diLwl

+ GEXSdiLdix2wl — GdﬁXZiX3w1 + aﬁx2ﬁx3diLwl .
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Then using the well-known formulas (8) and (9), we can equivalently reduce
(27) to
0= aﬁxsdiXle — 2adiX3diX2w1 + adiX3£X2diLw1

(28) .4 L
—alysLxdipw + al xsdipdixaw’ .

By (14), dipdix2w! = dix2w!. Then Lysdipdix2w! = Lxadiyx2w!. More-
over, by formulas (10) and d> = 0 and (11), we have

(29) diysdix2w! = (dixs + ixsd)dix2w' = Lxsdixaw!.
Also d'l)@}ﬁxQdZLWl = (d'lX3 + 'led)dEXTlel = ﬁx3ﬁx2diLw1, i.e.,
(30) dixsLx2dipw! = LysLy2dipw' .

So, our equality (28) can be equivalently transformed into
0 = alysdix2w' — 2aL ysdix2w' + al xsLyadipw!
— CLL‘,X&CdeiLwl + a£X3diX2w1 ,

i.e., into 0 = 0. So, (27) holds.
Comparing the coefficients on A2 in (26), we get

0= diXsdinJl — d’iX3[,X2diLw1 - ﬁxsdiLdixzwl + £X3£X2diLwl .

This condition is satisfied because by (29), (13) and (30) it can be rewritten
as

0= ,CX:sdinwl - [,X:s,CdeiLwl - ,stdixzwl + [,Xs,CdeiLwl .

Case 10. (a7 bla b27 b37 b47 b57 b6> = (07 07 07 )\7 K, _)" —,U,)
Condition (16) is

Ndix1dix2w® — N2dix1 Lz dipw® — N2 Ly dipdiew® + N2 Lxrdip L2 dipw®
= N2diy2dixy1w® — N2dix2Lx1dipw® — N2 L2 dipdi y1w®
+ A2£X2diL£X1diLw3 .

This condition holds because by (29), (30), (13) and (14) it can be trans-
formed into

AQEdeixﬂA)g — A2£X1£X2di[/w3 — Azﬁxldixﬂﬂg + AzﬁxlﬁXZding
= AQACXQCZZ‘)(IOJ:B — A2ﬁx2ﬁxldiLw3 - Azﬁx2d’iX1w3
+ )\2£X2£X1d'iLw3,

i.e., into 0 = 0.
Condition (17) is

Mudi 1 di xsw?® = Audi 1 £ xsdipw® =\l x1dipdi xsw? + \ul x1dp £ xsdipw?
= pdi x3dix10? — pdiys £xrdipw? — pALxsdipdix1w?
+M>\£X3dL,CX1diLw2 .
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This condition holds because by (29), (30), (13) and (14) it can be trans-
formed into

MeLxrdixsw? — MNuLox1 Lysdipw?® — MuLx1di xsw? + +Aul x1 £ xsdipw?
= uMNLysdix1w? — pALxs Lxidipw? — pAL ysdixiw?
+ M)\ExsﬁxldiLw2,

i.e., into 0 = 0.
Condition (18) is

0 = p2diysdix2w' — p2dixs Lyedipw' — p?Lsdipdiyew®
+ 12 Lxsdip £x2w + Mudi xadi xsw' — Mudi 2 £ xsdipw?
— )\/L,CX2diLdiX3w1 + )\MﬁX2diL£X3w1 .

This condition is satisfied because by (29), (30), (13) and (14) it can be
transformed into

0= p2Lysdixew' — p2LysLyadipw® — p?Lysdi 2w+
+ W2 Lys Lyadipw® + Ml xadiyswt — AL x2 L xsdipw!
— ML xadixsw' + ML x2Lysdipw!
i.e., into 0 = 0.

The proof of Proposition 3.3 is complete. O
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