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Upper and lower bounds
for an integral transform of positive operators
in Hilbert spaces with applications

ABSTRACT. For a continuous and positive function w (), A > 0 and a positive
measure g on (0,00) we consider the following integral transform

D) (1) = [T w )+ 1) dn (),

where the integral is assumed to exist for any positive operator T on a complex
Hilbert space H. In this paper we obtain several upper and lower bounds for
the difference D (w, u) (A) — D (w, u) (B) under certain assumptions for the
operators A and B. Some natural applications for operator monotone and
operator convex functions are also given.

1. Introduction. Consider a complex Hilbert space (H, (-,-)). An opera-
tor T on H is said to be positive (denoted by T > 0) if (T'z,z) > 0 for all
x € H and also an operator T on H is said to be strictly positive (denoted
by T > 0) if T' is positive and invertible. A real valued continuous function
f on (0,00) is said to be operator monotone if f(A) > f(B) holds for any
A>B>0.

We have the following representation of operator monotone functions [10],
see for instance [1, p. 144-145]:
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Theorem 1. A function f : [0,00) — R is operator monotone in [0,00) if
and only if it has the representation

A
1.1 t)=f(0)+0bt ——dp (A
(1) PO =FO b+ [ ).
where b > 0 and p is a positive measure on [0,00) such that
<A
1.2 ——dp (A .
(12) | e <o

A real valued continuous function f on an interval I is said to be operator
convex (operator concave) on I if

(0C) F(I=XN)A+AB) < (2)(1=X) f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operators A
and B on a Hilbert space H whose spectra are contained in I. Notice that
a function f is operator concave if —f is operator convex.

We have the following representation of operator convex functions [1,
p. 147):

Theorem 2. A function f :[0,00) — R is operator convez in [0, 00) if and
only if it has the representation
<12
13 fO=fOr ot [,
0 t+A

where ¢ > 0 and p is a positive measure on [0,00) such that (1.2) holds.

We have the following integral representation for the power function when
t >0, re(0,1), see for instance [1, p. 145]:

sin (rm) [ A1
™ 0 )\ + t

Motivated by these representations, we introduce, for a continuous and
positive function w (A), A > 0, the following integral transform:

14 , t
(1.4 0= [T . >0

where p is a positive measure on (0,00) and the integral (1.4) exists for all
t>0.
If 1 is the usual Lebesgue measure, we put

(1.5) D (w) (t) = /OOO mdA, £ 0.

Now, assume that T" > 0, then by the continuous functional calculus for
selfadjoint operators, we can define the positive operator

(1.6) D (w,) (1) = [ Tw) AT (),

= d\.
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where w and p are as above. Also, when p is the usual Lebesgue measure,
then

(1.7) D (w) (T) := /Ooow(x) (A+T)"td\,

for T > 0.
If we take p to be the usual Lebesgue measure and the kernel w, (A) =
A—1or € (0,1], then

sin (rm)

(1.8) 1 = - D (w,) (t), t > 0.

We define the upper incomplete Gamma function as in [8]:
I(a,z) = /Oo to e tdy,
which for z = 0 gives the Gamma fu;ctz'on
[(a) := /OOO t*le~tdt for Rea > 0.
We have the integral representation (see [9]):

P o] t—ae—t
1. r = dt
(1.9) (a,2) F(l—a)/o T+t

for Rea < 1 and |phz| < 7.
Now, we consider the weight w.—a.—. (A) :== A™% > for A > 0. Then by
(1.9) we have

0 71167)\
(1.10) D (w.0y) (t) = /O At A =T - @) T (0, 1)

for a <1 and t > 0.
For a =0 in (1.10) we get

00 =\
(1.11) D (w,—) (t) = /0 :+ LdA =T(DE'T(0, ) = ¢y (1)
for t > 0, where
(1.12) B (t) = / ¢ du.
t u

Let a = 1 — n, with a natural number n, then by (1.10) we have

ooAn—le—)\ 1
Dlwng ) ()= | 2 ar=Tm)" T —n,t
(o) (0= [ X5 = T e = .

= (n—DIt" Tl —n,t).

If we define the generalized exponential integral (see [6]) by

(1.13)

E,(2) =210 (1 —p,2) = 227! h e—_tdt
p . ’ P )

z
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then
"1 —n,t) = B, (t)
forn>1andt > 0.
Using the identity [6, Eq 8.19.7], for n > 2:

|
o

(_z)n—l 7 n

IR+ S k-2 ()

0

E,(z) =

B
Il

we get,
D (w-”*le*‘) (t)
= (n—1)'E, (t)

R 1o

-2
=> (D) (n—k -2 + (—1)" "1 By (1)
k=0
forn>2andt > 0.
If T > 0, then we have

S

oo

A% (t+A)Hda

s, D(wse-)(T) = |

Nl—a)T %exp(T)T(a,T)

for a < 1.
In particular, for a = 0,

(1.16) D (w,-) (T) = /000 e (T + N1 d\ = exp (T) E1 (T)
and, for n > 2,
D (w.n-1¢-) (t)

n—2
=> (D) (n—k=2!T" + (-1)" ' T" " exp (T) E1 (T),
k=0

where T" > 0.
For n = 2, we also get

(1.18)  D(w.,.)(T)= /000 Ae ™ (T + N 1dh=1—Texp(T)Ey (T)

for T > 0.
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We consider the weight W 1)1 (\) = )\%ra for A > 0 and a > 0. Then,
by simple calculations, we get

& 1 Int—Ina
(1.19) D (w(sar) () = /0 oo™ e

for all a > 0 and ¢ > 0 with t # a.
From this, we get

Int=Ina+ (t—a)D (w(._"_a)—l) (t)

for all £, a > 0.
If T > 0, then
InT=Ina+ (T —a)D (’U}(.+a)—1) (t)
=lna+ (T - / —— (A+T) " dA.
na+(T=a) [ 5o O+ T)
Let a > 0. Assume that either 0 < T < a or T > a, then by (1.20) we get

(1.20)

(1.21) (InT —Ina) (T —a) ' = /OOO (Aia) (A+T)"td

We can also consider the weight w2 ,2)-1 (A) = ﬁ for A > 0 and

a > 0. Then, by simple calculations, we get

o 1
b <w<-2+a2)’1> ) = /0 (A+1) (A2 + a?)dA
mt _Int—Ina
2a (1% + a?) t2 4+ a?

for t >0 and a > 0.
For a = 1 we also have

& 1 it Int
D - t) .= d>\ = —_
(w<'2+1> 1> ®) /0 (A1) (N2 +1) 2(124+1) t2+1
for t > 0.
If T"> 0 and a > 0, then

%T (T° + a2)71 — (0T —Ina) (T* +a®)"

_ [ 1 -1
_/O e AT

1

(1.22)

and, in particular,
(123) —T(T*+1) "' = (T*+1) 'nT = /Oo Lot
2 0 (A2+1)
Assume that 0 < A < B. We say that these operators are separated if
there exist 0 < <y such that 0 < A< <~ < B.
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For a positive operator T' > 0, we have the operator inequalities
|7~ < T < iT).
Therefore, if A, B > 0 with || A]| HB_lH < 1, then
o<|aY <A< Al <|BY T <B<|B].

The class of two separated positive operators play an important role in
establishing various refinements and reverses of operator Young inequalities
as pointed out in numerous recent papers from which we only mention [3],
[13] and the references therein.

2. Main results. In the following, whenever we write D (w, u) we mean
that the integral from (2.3) exists and is finite for all ¢ > 0.

Lemma 1. For all A, B > 0 we have the representation

(2.1) :/OO</1()\—i—sB—i—(1—s)A)_l(A—B)()\—i—sB—i—(l—s)A)_lds)
0 0
xw(N)du ().
Proof. Observe that, for all A, B > 0,

_ /oo w) [A+ B (A du ().
0

Let T, S > 0. The function f (t) = —t~! is operator monotone on (0, 00),

operator Gateaux differentiable and the Géateaux derivative is given by

[f(THS) — /(1)
t

(2.2)

Vir(S):= %gr(l)

] =771871

for T, S > 0.

Consider the continuous function f defined on an interval I for which the
corresponding operator function is Gateaux differentiable on the segment
[C,D] = {(1-t)C+1tD, t €]0,1]} for selfadjoint operators C, D with
spectra in I. We consider the auxiliary function defined on [0, 1] by

Jon (t) = F(L—t)C+tD), t € [0,1].
Then, by the properties of the Bochner integral, we have

1 1
FD)=1(€) = [ 5 Gen@it= [ Viipoun(D-C)ar

If we write this equality for the function f (¢t) = —t~! and C, D > 0, then
we get the representation

(23) C1—D1= /1 (1—t)C+tD) " (D—-C)((1—t)C+tD)""dt
0
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Now, if we take C = A+ B, D = A+ A in (2.3), then
A+B) T —a+4)7"1
:/1((1—t)(>\+B)+t(A+A))_1(A—B)
0
x (1=t)(A+B)+t(\+A)) at
:/1()\+(1—t)B+tA)_1(A—B)()\+(1—t)B+tA)_1dt
0
and by (2.2) we derive
D (w,p) (B) = D (w, ) (A)
:/OO (/1(A+(1—t)B+tA)1(A—B)(A+(1—t)B+tA)1dt>
0 0
xw (A)du(A),
which, by the change of variable t =1 — s, gives (2.1). ([l

We have the following double inequality for two positive separated oper-
ators:

Theorem 3. If the positive operators satisfy the separation condition
(2.4) O<a<AL<pB<y<B<I

for some positive constants «, 5, 7, 6, then

0< = [D(w,1) (B) = D (w, ) (6)]
(2.5) <D (w,u)(A) =D (w,u) (B)

"= 1D (w0 @) D (w) (7).

Proof. From (2.4) we have

<

O<~y—p<B-A<J{—aq,
which implies that
0<(y—B)(1—s)A+sB+\)"2
(1—s)A+sB+X) " (B—A) ((1—s)A+sB+ )"
<(@—a)(1—s)A+sB+\) "2

IN

for all s € [0,1] and A > 0.
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By integration over s € [0, 1] we deduce that
1
0< (’Yﬁ)/ (1—s)A+sB+\)*ds
0
1
g/ (1—8)A+sB+\)""(B—A)((1—s)A+sB+x)"ds
0

1
§(6—a)/0 (1—5) A+ sB+\)2ds

for all A > 0.
If we multiply this inequality by w (A) > 0 and integrate over the measure
(A) . we get

0<t-9 [ (/01<<1—3>A+sB+A>st)wu)dum
g/:o </01((1—5)A+SB+/\)1(B—A)((1—5)A+SB+)\)1ds)

x w (N) dp (N)
0o 1
§(5—a)/0 (/0 ((1—3)A+sB+)\)2ds>w()\)du()\),

and, by (2.1) we derive the inequality of interest

o) 1
0<(7—ﬁ)/0 </O ((1—s)A+sB+)\)_2ds)w()\)du()\)
(2.6) <D (w,p)(A) =D (w,pn) (B)

') 1
< (5—a)/ (/ ((1—5)A+sB+)\)_2ds> W\ d(\).
0 0
From (2.4) we derive that
(1—=8)A+sB+A<(1—35)8+s0+ A,
which implies that
(1—s)A4+sB+A) 1> ((1—s)B+sd+A)""

and
(1—s)A+sB+X)"2>(1—5s)B+s5+ )2
for all s € [0,1] and A > 0.
Also

(1-=s5)A+sB+A>(1—s)a+sy+ 2,
which implies that
(1—s)A+sB+X) "< (1—s)a+sy+ )"

and
(1=9)A+sB+ N2 <((1—s)a+sy+A)°
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for all s € [0,1] and A > 0.
Therefore

=0 [ ([ @95+ 02 ds ) w oy

(2.7) N

S(v—ﬁ)/o </O ((1—s)A+sB+>\)_2ds>w(/\)du(>\)
and

(6—04)/000 </01((1—3)A+5B+)\)_2ds>w()\)du()\)
(2.8) NG

<6-a) [ ([ @-satsrenTas)uma,
Since

-8 [ </01((1s)ﬁ+85+A)2d8)w(A)du(A)
zg__g/:o (/01((1—5)5+85+A)1 (5—B)((1—s)ﬁ+56+>\)1ds>
(N du ()

X w
= g:g [D(w, ) (B) —D(w,u) (0)] (by (2.1) for A= I and B =4I)
and
o) 1
((5—a)/0 (/0 ((1—8)Oé+8’y+)\)2ds>w()\)d,u()\)
B J—a 00 1 . B
=20 [T et sn T - (a-saks 4 s )
xw (X)dp ()
= jiz [D(w, 1) (@) =D (w,p) ()] (by (2.1) for A=al and B=~I),
then (2.7) and (2.8) become
=21 ) (5) - D (w0 9)
(2.9) -
< (v—ﬂ)/o </O ((1 —S)A+3B+/\)2ds> w (N) dp (N)
and
00 1
(0 —a) (1—s)A+sB+X)"ds | w(N)du(N)
(2.10) 50[/0 (/0 >
< D (w, ) (@) =D (w, ) (y)]-

¥
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Finally, on making use of (2.6), (2.9) and (2.10), we derive (2.5). O
Corollary 1. If A, B > 0 with || A]] HB_lH <1, then
). 1-lal5

BT LT T3 2 () (141 = () (1B
< D (w, 1) (4) = D (w, 1) (B)
(2.11) 1Bl ]|A-] - 1
— AT = (1B
< [0 ) (477 =D o) (1377)]

The proof follows by Theorem 3 on taking o = HAilel, g = 4],

v = HBilel and 0 = || B|| and performing the required calculations.
We can state the following result for operator monotone functions on
[0, 00):

1B~

Proposition 1. Assume that f : [0,00) — R is an operator monotone

function on [0,00). If A, B > 0 satisfy condition (2.4), then

@ =08 10 (57 5]

(212 SFAAT BB - f(0) (A - B
<2=C [f@a =)y = £ ) (@ ).

If f(0) =0, then we have the simpler inequality

L@t - r ) < f) AT - (B B
(213 0P o
S — [fla)ya™ = fF(y)771].
Proof. If f:[0,00) — R is an operator monotone, then by (1.1)

S (@) = f(0)

t
for some b > 0 and a positive measure u, where ¢ (A) = A\, A > 0. By apply-
ing Theorem 3 for the D (¢, 1) and performing the required calculations, we
deduce (2.12). O

—b=D(p) (1), t >0,

Corollary 2. Assume that f : [0,00) — R is an operator monotone function
on [0,00). If A, B> 0 with ||A||||B~!|| < 1, then

oo LolA]B
— Bl = AD 1B

< LA 1A = FABIIBIT = £ ©) (Al = 1817
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<FA) AT - f(B)B = f(0) (A1 =B
ES
= AT =[BT
(AT A= (1B 1B
=FO ([[A7H] = 1B7H]] -
If f(0) =0, then
e rEs L B
O < BT A TE AN 147 - B
<fA)A - f(B)B!
1B A~ -1
S AT =[5

<[ ) A= (1) i) -

The proof follows by Proposition 1 on taking oo = HA_1H_1 , B =|A4],
_1|-1
VZHB 1H and 0 = || B||.
We can state the following result for operator convex functions on [0, c0) :

1B~

(2.14)

1B~

Proposition 2. Assume that f : [0,00) — R is an operator convex function
on [0,00). If A, B > 0 satisfy condition (2.4), then

(2.15)

55 BB = 1057 = £ 0) (57— 67
(2.16) <fA)A?—f(B)B? = fL(0) (A =B
5

[fla)a = ()72 = FL0) (et =771)].

Y @

Proof. If f : [0,00) — R is an operator convex function on [0, 00), then by
(1.3) we have

f(t)—f(gg—f+(0)t—c—D(ﬁ,u)(t)
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for some ¢ > 0 and a positive measure u, where £ (\) = A\, A > 0. By apply-
ing Theorem 3 for the D (¢, 1) and performing the required calculations, we
deduce (2.15). O

Corollary 3. Assume that f : [0,00) — R is an operator monotone function
on [0,00). If A, B > 0 with ||A]| HB_IH <1, then
L—[lAl B~
(Bl =1AN 1B
< [F Q1A 14172 = £ BIY IBI72 - £ ©) (1417~ 1B1%)

£ (A = 1817 |
SFA)AP = F(B)B2 = f(0) (A2 =B7%) = fL(0) (A" = B}
1B A7 -1
T AT = 1B
< L (A a1 = s () 1B~
—£ O ([l = [B7*) = £ @ (JA~ = 1B ]
If f(0) =0, then
(2.17)
o< 1= lALB
= (Bl = 11AD 1B~
x £ A7 = £ QB IBI = £ ©0) (141~ = 18] 7)]
<f(A)A2—fF(B)B? - fL(0) (AT =B
1Bl [[A~] -1
~ AT = 1B
S R N S R (2 N 2
—fLO) ([[AH = 1[B7HD] -
3. Some examples. Consider the operator monotone function f (t) = ¢",

€ (0, 1]. If the condition (2.4) is satisfied, then by (2.13) we get the power
inequalities

7_5 r— r— r— r— -« r— r—
5_5(5 1_§ 1)§A 1_p 1§7_a(a Ly 1)‘

0<

1B~

1B~

If A, B >0 with [|A|[B7}|| < 1, then by (2.14) we obtain

oo 1-lAlE
— (1Bl = 1AN IB-

(HAHT—I - ||B||T—1> < AT—I _ BT‘—l
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1B |A~" | -1

— AT =B

Consider the operator convex function f (t) = —In (¢t + 1). If the condi-
tion (2.4) is satisfied, then by (2.16) we get the logarithmic inequalities

g:g [0 (6 +1) -2 (B+1)+ B -5

<B?m(B+1)—A2Im(A+1)+ A -B!

1B (a1 = 1B

< j:z Y ?In(y+1) —a?n(a+1)+a ' =471,
If A, B >0 with [|A] |[B7}| < 1, then by (2.17) we derive
L[4l B~

0<

(Bl = 1A [[B=H]
X [HBII_2 (| Bl +1) = A (A +1) + | A7 - IIBII_I}
<BZIm(B+1)-A2m(A+1)+A ' -B™!
|B][[A7H] -1
— AT = 1B
12 11 _112 11
B P (B 4+ 1) = lA7 P (a7 1)
+[lA7 =B
Assume that a < 1. By taking

1B~

D (w—ap-) (T) = /0 T amee (T+ XN "'dA\=T(1—a)T %exp (T)T(a,T)
in (2.5), we obtain
0< = [B7"exp (B)T(a, B) — 6~ “exp (8) I'(a, 5)]
< A %exp (A)T(a, A) — B %exp (B)T'(a, B)

o— [a™%exp (@) T(a, ) =y~ “exp (v) [(a, )]

provided that the positive operators A, B satisfy condition (2.4).
In particular, we have

™

0 < 2= [exp (8) Ev(8) — exp (3) Ex(9)]

< exp (A) E1(A) — exp (B) E1(B)

—

[«

IN

[exp (@) E1 () — exp (7) Ex(v)] -

2
Q
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If A, B> 0 with [|A| |[B~!|| <1, then
) 1 lAL5]
= UBI = 141 151
x (A1~ exp (1 4) T(a. I AI) — || BI = exp (1BI) T(a, | B])]
< A %exp(A)T(a,A) — B %exp (B)I'(a, B)
A
— AT = 1B
(14 exp (147 7) o

|87 e (1717 Da B )

1B~

A7

In particular,
) 1-lAl]E
— (1Bl = 1A 1B
x [exp ([|A[]) E1 ([ All) — exp (I[B]) £1 ([|1BI)]
< exp (A) E1(A) — exp (B) E1(B)
1B [|A~" | -1
— AT =B

<Jeso (Ja717) 21 (a7
—ew (I517) #1717

The interested author may state other similar inequalities by using the
examples of operator monotone functions from [2], [4] and the references
therein.

1B~
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of the manuscript.
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