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Bell numbers and Kurepa’s conjecture

Abstract. We prove under a mild condition that Kurepa’s conjecture holds
for the set of prime numbers p such that ( p−1

2
)! =

(
2
p

)
in Fp.

1. Introduction. Kurepa’s conjecture states that for any odd prime num-
ber p, we have

(1) 0! + 1! + · · ·+ (p− 1)! 6≡ 0 (mod p).

We let !p (as usual) denote the expression on the left-hand side of (1).
We call it the left factorial of p. Kurepa’s conjecture (introduced by Duro
Kurepa in 1971 [17]) is a long-standing difficult conjecture. We do not know
any infinite set of prime numbers for which the conjecture holds. Moreover,
Barsky and Benzaghou [5, 6] failed to prove it. Details about work on the
conjecture appear in [2–4,8, 11,14,16,18,19,21,23–25,27,28,30–33].

The purpose of the present paper is to prove the conjecture in one special
case. This can be achieved with the aid of the Bell numbers. We now recall
some facts about them.

Definition 1. The Bell numbers B(n) are defined by B(0) := 1, and

B(n+ 1) :=

n∑
k=0

(
n

k

)
B(k).
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The Bell numbers B(n) are positive integers that arise in combinatorics.
Besides the classical Definition 1 that comes from Becker and Riordan [7],
other definitions, or characterizations, appear in [1], [9], [10, p. 371], [22]. To
be more precise, let us fix the notation throughout the paper in Section 2.

In the following, we use the notation in Section 2.
The link of r with the Bell numbersB(n) modulo p [5], [20, Theorem 8.24],

is the following equality:

(2) B(n) = −Tr(rc(p))Tr(rn−c(p)−1) in Fp.

Gallardo and Rahavandrainy [12] generalized the Bell number B(n) ∈ Fp to
some rational fraction of r, β(n) ∈ Fq (see Definition 4), with the property

(3) Tr(β(n)) = −B(n).

Our contribution in the present paper is to observe an unnoticed simple
fact. Motivated by some computations, we realized that there seem to be
few odd primes p for which

(4) β(p− 1) = rc(p) in Fq.

Nevertheless, always β(p− 1) = krc(p) for some k ∈ Fp, see Lemma 6.
More precisely, it seems that the only solutions p of (4) are p = 3 and

p = 10331.
Since Kurepa’s conjecture for a prime number p fails if and only if (see

Lemma 10)

(5) B(p− 1) = 1 in Fp

and equations (2) and (3) hold, we are able to easily deduce the result
described in the abstract (see the short proof in Section 4).

Essentially, the idea of the proof is to look for prime numbers for which
(4) and (5) are equivalent, since these primes should be counter-examples
to Kurepa’s conjecture.

Namely, in the present paper, we prove the following result:

Theorem 2. Assume that the only odd prime solutions p of β(p−1) = rc(p)

in Fq, are p = 3 and p = 10331. Then !p1 6= 0 in Fp1 for all odd primes p1
for which (p1−1

2 )! =
(
2
p1

)
in Fp1.

Remark 3.
(a) By computations in gp-PARI (that lasted about 64 hours) we know

that the only odd prime numbers p < 4000000 for which β(p− 1) =

rc(p) in Fq are p = 3 and p = 10331.
(b) The primes p1 such that (p1−1

2 )! =
(
2
p1

)
in Fp1 appear to be (but

without proof) exactly those in the OEIS sequence A129517 [29]. Of
course, we do not know if the sequence contains an infinite number
of entries. In other words, we do not know if our theorem holds for
infinitely many prime numbers.
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2. Notation. We call an integer d a period of B(n) (mod p) if for all non-
negative integers n one has B(n+d) ≡ B(n) (mod p). For each prime num-
ber p, Williams [34] proved that the sequence B(n) (mod p) is periodic. We
set q := pp. Let Fp denote the finite field with p elements and Fq denote
the finite field with q elements. Let r be a root of the irreducible trinomial
xp−x−1 ∈ Fp[x] in some fixed algebraic closure of Fp. The field Fq = Fp(r)
is the Artin–Schreier extension of degree p of Fp. We denote by Tr the trace
function from Fq onto Fp. We put c(p) := 1 + 2p+ 3p2 + · · ·+ (p− 1)pp−2,
and recall that !p := 0! + 1! + · · ·+ (p− 1)!. For convenience of the reader,
we repeat here some definitions from [12] that we need for the proof.

Motivated by the definition of the falling and rising powers of positive
integers (see, e.g., [13, pages 248–250]), we define the following:

Definition 4. Set ε(i) := (r+ i+1) · · · (r+ p− 1) in Fq for i = 0, . . . , p− 2,
and ε(p− 1) := 1, ε(p) := ε(0). More generally, we extend the definition to
any integer n by putting ε(n) := ε(n (mod p)).

Definition 5. We put for every integer n,

(6) β(n) :=

p−1∑
i=0

(r + i)nε(i) in Fq.

3. Tools. The following lemma [12, Lemma 7] is about the p − 1 roots of
r in Fq.

Lemma 6. The set of y ∈ Fq such that yp = ry equals {krc(p) : k ∈ Fp}.

We also have the following result:

Lemma 7. Let n be any nonnegative integer. With the same notation as
before, we have the following:

Tr(β(n)) = −B(n) in Fp.

Kahale [15, formula (3)] (see also [26]), proved the following:

Lemma 8. Let p be an odd prime number. One has

B(c(p)) = (−1)
(p−1)(p−3)

8

(
p− 1

2

)
!

in Fp.

The next result is [12, Lemma 42 (a)].

Lemma 9. We have

Tr(rc(p)) = B(c(p)) in Fp.

The link between Kurepa’s conjecture (1) and Bell numbers [5, p. 2] is
the following statement:
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Lemma 10. Let p be an odd prime number. Then,

!p = 0 in Fp if and only if B(p− 1) = 1 in Fp.

For completeness, we give a short proof of the next classical result.

Lemma 11. Let p be an odd prime number. We have

−1 = (p− 1)! =

(
p− 1

2

)
!
2

· (−1)
p−1
2 in Fp.

Proof. First, observe that Wilson’s theorem says that

(7) −1 = (p− 1)! in Fp.

Second, we compute (p− 1)! in Fp as follows:

(8) (p− 1)! = (1 · (p− 1)) · (2 · (p− 2)) · · ·
(
p− 1

2
·
(
p− p− 1

2

))
.

In other words, (8) implies the following equality:

(9) (p− 1)! =

(
p− 1

2

)
! · (−1)

p−1
2 ·

(
p− 1

2

)
! in Fp.

The result follows from (7) and (9). �

4. Proof of Theorem 2. Let p be an odd prime such that

(10) β(p− 1) = rc(p) in Fq,

e.g., p ∈ {3, 10331}. Taking the trace Tr in both sides of (10), by Lemma 7
and Lemma 9 we obtain

(11) −B(p− 1) = B(c(p)) in Fp.

Now we use the explicit form of B(c(p)) in Lemma 8 to write (11) as

(12) −B(p− 1) = (−1)
(p−1)(p−3)

8 ·
(
p− 1

2

)
! in Fp.

Replacing (−1) in the left-hand side of (12) and using Lemma 11, we get

(13)
((

p− 1

2

)
!

)2

· (−1)
p−1
2 ·B(p− 1) = (−1)

(p−1)(p−3)
8 ·

(
p− 1

2

)
! in Fp.

Multiplying both sides of equation (12) by (−1)
p−1
2 , we obtain

(14)
((

p− 1

2

)
!

)2

·B(p− 1) = (−1)
(p−1)(p−3)

8 · (−1)
p−1
2 ·

(
p− 1

2

)
! in Fp.

But

(15) (−1)
(p−1)(p−3)

8 · (−1)
p−1
2 = (−1)

p2−4p+3
8

+ 4p−4
8 = (−1)

p2−1
8 .
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Thus, (14) implies that

(16)
((

p− 1

2

)
!

)2

·B(p− 1) = (−1)
(p2−1

8 ·
(
p− 1

2

)
! in Fp.

But
(
p−1
2

)
! 6= 0 in Fp. Dividing both sides of (16) by

((
p−1
2

)
!
)2

, we
obtain

(17) B(p− 1) =

(
2
p

)(
p−1
2

)
!

in Fp,

since by the quadratic law of reciprocity of Gauss, one has

(18) (−1)
p2−1

8 =

(
2

p

)
.

Now we take a prime p1 such that

(19)
(
p1 − 1

2

)
! =

(
2

p1

)
in Fp1 .

By Lemma 6 we have

(20) β(p1 − 1) = k · rc(p1)

for some k ∈ Fp1 . Thus, as before, by Lemma 7, Lemma 9, Lemma 8, and
Lemma 11 we obtain (after several steps, analogous to steps (10), (11), (12),
(13), (14), (15), and (16)), the following analogue of (17):

(21) B(p1 − 1) = k ·
(
2
p1

)
(p1−1

2 )!
= k in Fp1

since (19) holds.
If k 6= 1, then Kurepa’s conjecture holds for p1 by Lemma 10. If k = 1,

then by our hypothesis we have p1 ∈ {3, 10331}. But we easily check that
p1 6∈ {3, 10331}.

This finishes the proof of the theorem.

Acknowledgments. We thank the referee for detailed comments and sug-
gestions.
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[28] Šami, Z., A sequence un,m and Kurepa’s hypothesis on left factorial, in: Symposium
Dedicated to the Memory of Duro Kurepa (Belgrade, 1996), Sci. Rev. Ser. Sci. Eng.
19–20 (1996), 125–113.



Bell numbers and Kurepa’s conjecture 23

[29] Sloane, N. J. A., et al., The On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org, 2019.
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