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The twisted gauge-natural bilinear brackets
on couples of linear vector fields
and linear p-forms

ABSTRACT. We completely describe all gauge-natural operators C which send
linear (p+2)-forms H on vector bundles E (with sufficiently large dimensional
bases) into R-bilinear operators Cy transforming pairs (X1 ® w1, X2 ® ws) of
couples of linear vector fields and linear p-forms on E into couples Cr (X1 @
w1, X2 @ we) of linear vector fields and linear p-forms on E. Further, we
extract all C' (as above) such that Cp is the restriction of the well-known
Courant bracket and C'y satisfies the Jacobi identity in Leibniz form for all
closed linear (p + 2)-forms H.

1. Introduction. All manifolds considered in the paper are assumed to
be Hausdorff, second countable, finite dimensional, without boundary, and
smooth (of class C*°). Maps between manifolds are assumed to be C*°.

A vector field X on a vector bundle F is called linear if £; X = 0, where
L is the Lie derivative and L is the Fuler vector field. A p-form w on a
vector bundle E is called linear if £yw = w. Let T (TE & AP T*E) denote
the space of couples X @ w of linear vector fields X and linear p-forms w
on F.
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Let VB, be the category of n-rank vector bundles with m-dimensional
bases and their vector bundle isomorphism onto images. A VB,, ,-gauge-
natural operator

. r’<p/+\2T*> . Lm2<rl(T@/P\T*> xrl(T@/p\T*>,rl<T@/p\T*>>

sending linear (p + 2)-forms H € T (APT2 T*E) on VB,, ,-objects E into
R-bilinear operators

p p p
Cy : Tl <TE ® /\T*E) x Tk, <TE ® /\T*E) — T, (TE ® /\T*E>

is a VB, p-invariant family of regular operators (functions)
p+2
C: FZE( A\ T*E)
P P P
— Ling <rlE <TE @ /\T*E) x T <TE ® /\T*E),PZE (TE @ /\TE))

for all VB, n-objects E, where Lino(U x V, W) denotes the vector space
of all bilinear (over R) functions U x V' — W for any real vector spaces
Uv,w.

The first main result of the article is the following theorem.

Theorem 1.1. Letm, p > 1 andn > 1 be fixed integers such that m > p+2.
Any VB, n-gauge-natural operator

p+2 P P P
C: r’(/\ T*) ~~ Ling <rl (T@/\T*) x T (T@/\T*>,rl (T@/\ T>>
is of the form
Cu(pt, p?) = a[ X1, X2 @ {01 Lx1w? + bo L 2wt + badi y1w?
(1) + b4diX2w1 + b5£X1dz’Lw2 + bﬁﬁX2d’iLw1
4+ crixitx2 H 4+ coipiyiixedH + csipiyedixy1 H

+ cqirixridix2 H 4 csipdix2ixi1 H}

for arbitrary (uniquely determined by C') reals a, by, ba, bs, by, bs, bg, c1, c2, c3,
ca,¢5, where p' = X' @ w' € TL(TE © NPT*E), H € TL,(A\""? T*E), and
where [—, —] is the usual bracket on vector fields, L is the Lie derivative,
d is the exterior derivative, © is the insertion derivative and L is the FEuler
vector field.

A VB, »-gauge-natural operator C' as above satisfies the Jacobi identity
in Leibniz form for closed linear (p + 2)-forms if

(2)  Culp'.Cu(p*,p%) = Cu(Culp', p*).0°) + Cu(p*,Cu(p', p*))
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for all closed linear (p+ 2)-forms H € T4 (AP*? T*E) and all linear sections
pPl=Xouw ey (TE® AN\PT*E) for i = 1,2,3 and all VBB, ,-objects E.
For example, the twisted Dorfman—Courant bracket given by

(3) [X'ew, X?ow?g =X XY & {Lx1w® —iyedw! +ixiix2H}

is a gauge-natural operator in question satisfying the Jacobi identity in
Leibniz form for closed linear (p + 2)-forms.
The second main result of the article is the following theorem.

Theorem 1.2. If additionally m > p + 3, then any gauge-natural operator
C as above satisfying the Jacobi identity in Leibniz form for closed linear
(p + 2)-forms and the initial condition Co = [[—, —]]o satisfies the equality

(4) Cp(X'ow, X2@w?) = [[X'ow!, X2 @ w?w

for any closed linear (p+2)-form H € I‘ig(/\er2 T*E) and any X' ®w!, X2®
w? e TL(TE ® NP T*E), where [[—, =]y is the (above) twisted (H-twisted)
Dorfman—Courant bracket and ¢ is an arbitrary (uniquely determined by C')
real number.

Theorems 1.1 and 1.2 for p = 1 are proved in [4].
From now on, let R™"™ be the trivial vector bundle over R™ with the

standard fibre R™ and let 2!, ..., 2™, y', ..., y" be the usual coordinates on
R™™,

2. The gauge-natural bilinear brackets on couples of linear vector
fields and linear p-forms. Let m,n,p be positive integers.

Let E = (E — M) be a vector bundle from VB, .

Applying the tangent and the cotangent functors, we obtain double vector
bundles (TE; E,TM;M) and (T*E; E, E*; M).

A vector field X on F is called linear if it is a vector bundle map X :
E — TFE between E — M and TE — TM.

Equivalently, a vector field X on F is linear if it has an expression

- 0 - 0
_ 10,1 m k(.1 m\,Jj =
X-Za(z,...,x )aazi—f_Aij(I"”’x )y ay
1=1 J,k=1
in any local vector bundle trivialization z',...,z™,y',...,y" on E.

Equivalently, a vector field X on F is linear iff L1 X = 0, where £ denotes
the Lie derivative and L is the Euler vector field on E (in vector bundle
coordinates L =37, Y’ aiyj)'

Equivalently, a vector field X on FE is linear if (a;).X = X for any ¢t > 0,
where a; : F — E is the fibre-homothety by t.

A p-form w on F is called linear if the induced vector bundle morphism

e lTE 5 T E
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over the identity on E is also a vector bundle morphism over a map &*~ T M
— E* on the other side of the double vector bundle.
Equivalently, a p-form w on F is linear if it has an expression

w = Z ai17..,7¢p7j(w)yjdxi1/\. . ./\dacip—l—z bil7...,ip71,j(a:)dyj/\d:vil/\. . Adxir1

in any local vector bundle trivialization z',..., 2™, y',...,y" on E.

Equivalently, a p-form w on F is linear iff Lrw = w.
Equivalently, a p-form w on F is linear iff (a1).w = tw for any ¢t > 0.

We have the following definition being a modification of the general one
from [1].

Definition 2.1. A VB,, ,-gauge-natural bilinear operator
p p P
A FZ<T@/\T*> X FZ<T@/\T*> ~~ FZ<T@ /\T)
is a VB, y-invariant family of R-bilinear operators
P P P
AT <TE ® /\T*E) x Tk, (TE ® /\T*E) — I, (TE ® /\T*E>

for all VB, ,-objects E, where I'',(TE @ A\’ T*E) is the vector space of
linear sections of TE & A\’ T*E.

Remark 2.2. The VB,, ,-invariance of A means that if
p p
X'egw' X2 el (TEe NT*E ) xTL | TE® N TE
E E
and
X o', X 9% c FlE<TE ® /\TE> x FlE<TE ® /\TE)

are p-related by an VB, ,-map ¢ : E — E (i.e., X'o ¢ = Tyo X" and
wop=APT*pow! for i =1,2), then so are A(X! @ w', X? @ w?) and
AX ' ao X aw?).

In [2], we proved the following result.

Theorem 2.3. Let m, n > 1 and p > 1 be natural numbers such that
m > p+ 1. Any VB, n-gauge-natural bilinear operator

P P P
A: FZ<T@/\T*> X FZ<T@/\T*> s I‘Z<T@/\T*>
is of the form
AX o w!, X2 @ w?) = a[ X, XY@ {b1Lx1w® + baL 2wl + badiy1w?
+ b4diX2w1 + b5£X1diLw2 + b@ﬁdeiLwl}
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for arbitrary (uniquely determined by A) real numbers a, by, by, bs, by, bs, bg.

3. The twisted gauge-natural bilinear brackets on couples of linear
vector fields and linear p-forms.

Definition 3.1. A VB,, ,-gauge-natural operator

o rl<p/+\2T*> » Lm2<rl<T@/p\T*> xrl(T@f\:r*)pl(T@/p\T*))

sending linear (p + 2)-forms H € TL(APT? T*E) on VB,, ,-objects E into
R-bilinear operators

p p p
Cy : Tl <TE ® /\T*E) x Tk, <TE ® /\T*E) — T, (TE ® /\T*E>

is a VB, n-invariant family of regular operators (functions)
p+2
C: FZE< A\ T*E)
p p p
— Ling <FZE <TE ® /\TE> x Il <TE ® /\T*E>,FZE <TE ® /\TE))

for all VB, ,-objects E, where Lina(U x V,W) denotes the vector space
of all bilinear (over R) functions U x V' — W for any real vector spaces
Uv,w.

Remark 3.2. The invariance of C' means that if H € T,(AP">T*E) and
H e I‘%(/\er2 T*E) are p-related and

p p
(X'ow, X2pw?) el <TE ® /\TE> x T, <TE ® /\TE)
and
~ ~ p ~ ~ p ~
X'eo', X?@a?) el (TE ® /\T*E> x Tl (TE ® /\T*E>

are also p-related by a VB, ,-map ¢ : £ — E, then so are Cur(X! o wl,
X2 @w?) and Cf(X! @ @', X2 © ?).

The regularity of C' means that C transforms smoothly parametrized fam-
ilies (Hy, X} @w}, X2@w?) into smoothly parametrized families Cp, (X} @wy,
X2 w?).

Example 3.3. The twisted Dorfman—Courant bracket
6) [X'owhX?2ew?y =X, X e {Lxiw? —ixedw! +ixiix2H}

is a gauge natural operator in the sense of Definition 3.1.
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Remark 3.4. Quite similarly, one can introduce the concepts of VB, ,-
gauge-natural operators

P2

I </\ T*) s Ling(THT) x THT), THT)),

I <p/+\2T*> ~ Lins (Fl(T x TI(T),T! </\T)>
T <p/+\2 T*) s Ling (Fl(T) « T </p\ T*>,FZ(T)> :

p+2
Fl</\ T*> - ng(rl </\T> x T </\T> r </\T )) :
For example, a VB,, ,-gauge-natural operator
p+2 p
I (/\ T*) ~ Ling <F1(T) x T </\ T*) , Fl(T)>

is a VB, n-invariant family of regular operators (functions)

p+2 P
PZE</\ T*E> — Ling (FZE(TE) x T </\ T*E) : rlE(TE)>
for all VB, ,-objects E.

Lemma 3.5. Any VB, ,-gauge-natural operator C' in the sense of Def-
inition 3.1 can be considered (in the obvious way) as the system C =
(CY,C?,...,C®) of VBy.n-gauge natural operators

p+2
c?:r! (p/+\2T> = ng(rl( x TH(T), T (/\T>>

p+2 : P
c®: rl</\ T*) ~ Lm2<rl </\T> X rl</\T >,rl</\T*>> .
Proof. The lemma is obvious. O

We prove the following theorem corresponding to Theorem 1.1.

Theorem 3.6. Letm, p > 1 andn > 1 be fixed integers such that m > p+2.
Any VB, n-gauge-natural operator C in the sense of Definition 3.1 is of the
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form
Cu(p', p?) = a[X, X2 @ {01 Lx10w? + boL 2w’ + bydi x1w?
™) + badi 2w + bsLx1dipw?® + bg L yadipw?
+crixiix2 H + cotpixiix2dH + csipixadix1 H
+ cairixidix2H + csipdix2ixi1 H}
for arbitrary (uniquely determined by C') reals a, by, ba, bs, by, bs, bg, c1, c2, C3,
¢4, 5, where pl = X' @ w' e T (TE® \PT*E), H € I‘IE(/\er2 T*E).

Proof. For p = 1, our theorem is the main result of [4]. So, Theorem 3.6
for p = 1 holds. So we may assume that p > 2.

Consider a VB,, ,-gauge-natural operator C in the sense of Definition 3.1.
We can easily see that Cj is a VB, ,-gauge-natural bilinear operator in the
sense of Definition 2.1. Hence, replacing C by C'—Cj and using Theorem 2.3,
we may assume that

Co=0.
So, because of Lemma 3.5, our theorem is an immediate consequence of
Lemmas 3.7-3.14, below. ]

Lemma 3.7. Let m,n,p be fized positive integers. Any VB, n-gauge-natural
operator

p+2
ct. 1 (/\ T*) ~s Ling(THT) x TYT), TH(T))
such that C’é =0 4s 0.

Proof. Using the invariance of C! with respect to the fiber homotheties,
we get Cly (X, X1) = CH(X, X)) for any linear vector fields X and X; and
any linear (p + 2)-form H on a VB, ,-object E and any ¢ > 0. Putting
t — 0, we get CH(X,X1) = C}(X, X1). Then (by C} =0) CL(X,X;) =0.
So, C' =0. O

Lemma 3.8. Let m, p > 2 andn > 1 be fized integers such that m > p+ 2.
Any VB, n-gauge-natural operator

p+2 p
c?: 1! (/\ T*> ~ Ling (r’(T) x TH(T), T (/\T))
such that C’g =0 is of the form

C%4 (XY, X?) = crixrixe H + coipixvix2dH + c3ipiyedixi H
+ cqipixidiy2 H + csipdixeixi H

(8)

for arbitrary (uniquely determined by C?) reals c1, ca, c3, ¢4, c5, where X1, X?
€ T (TE) and H € T (NPT T*E).
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Proof. Consider arbitrary linear (p + 2)-forms H and H and linear vector
fields X, X, X7 and X; on E = R™".

By the non-linear Peetre theorem (Theorem 19.10 (for f = 0) in [1]),
there is a positive integer  (independent of H, H, X, X, X1, X1) such that
the conditions

Jo(H) = j§(H), jo(X) = j5(X) . j5(X1) = jp(X1) (0 € R™)
imply
Jo(Ch(tX,1X1)) = jo(Cly(1X,1X1)) (0 € R™)
for a sufficiently small real number ¢ > 0 (depending on H, H, X, X, X1, X1).
Further, using the invariance of C? with respect to the fiber homotheties,
we get
(9) O (X, X1) = tCh (X, X1)

for all t > 0. (Then CZ;(tX,tX1) = t3C%(X, X;) for all t > 0.)
Then the conditions

JH) = jo(H), 35(X) = 55(X) . 4o (X1) = j5(X1)
imply
CH(X, X1)j0 = C4(X, X1)p (0€R™).
Consequently, C? is of finite order r. Then C% (X, X;) is linear in H

because of (9) and the homogeneous function theorem.
It is obvious that C? is determined by the values

(10) ng---iXp+2012f{(X1aX2)|u R

for all points u € Rgn’n, all vectors X3, ..., Xp2 € T,R"™", all linear vector
fields X; and X5 and all linear (p + 2)-forms H on R"", where i is the
insertion derivative.

Using the 3-linearity of C?, we can assume that the underlined vector
field X, of Xy is of the form X, = fY for some “constant” vector field Y
on R™ and some f: R™ — R. We can also assume that u # 0 and

Trwo Xl\u; }/‘0, T?T(Xg), N ,TTF(Xp+2)

are linearly independent (here we use m > p + 2), where 7 is the bundle
projection of E = R™". Then, using the VB,, ,-invariance of C?, the 3-
linearity of C? and the vector bundle version of the Frobenius theorem, we
can write

(11) u=-e; =(1,0,...,0) e R" = Ry"",
H = z%*dz™ A ... Ada™+2 or H = 2%dy® Adz? A ... A dadr !

0

(12) Xl = %7
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0 0
(XQZ!Tﬂ@ OI'XQZCCB k )

Yoy

and
0 0

where o = (o, ..., ) and 8= (B4, ..., Bm) are m-tuples of non-negative
integers, i1,...,%p42 are integers with 1 < 41 < g < ... < ipy2 < m,
Jis-- ., Jp+1 are integers with 1 < j; < jo < ... < jpy1 < m and k, [ are
numbers from {1,...,n}. Let us assume additionally that
(14) ixy - iX, 4. Ch (X1, X2)j, # 0.

First we consider the case H = 2“y*dx™ A ... A dz'+2 and X, = xﬁa%g.
Then using the invariance of C? with respect to (712!, ... 2™, vt ... y"),
we get the condition

T oo " Tp42 - iX3 .. 'iXp+2012—I(X17X2>|u
=7%. Tﬁ *Tiy e Tipt2 © iX3 "'Z‘Xp+QC%I(X17X2)|u'

Then a = (0), 8 =(0), i1 =1 and ... and 4,12 = p+ 2, i.e.,

9

ox2’

Next, we consider the case H = z%dy* Adz' A. . .AdzIr+! and Xo = mﬁyka%l.

Then (using similar arguments), we get

H = y*dz' Ao . AdaPT? and X, =

0
H =dy* ndzt Adz3 A ... A daPt? anngzykﬁ.
Y

Similarly, in the case H = z%y*da™ A ... Ada'»+> and Xo = 28y%-2; we
Ay
get a contradiction with (14).
Similarly, in the case H = z%dy* A da?t A ... A dair+t and Xy = 2P 225

we get 927
(15) (H—xidyk/\dxl/\.../\ci;i/\.../\dxpwandXQ—822)

or

(16) (H:dyk/\dml/\.../\j;i/\.../\da:pﬂanngzxiaaxQ)

for some ¢ = 1,...,p + 2, where @ means that a is dropped. If i = i, > 4,

then using the invariance of C? when replacing 2> by x% (and vice-versa),
we see that the value (10) for i = i, is equal (modulo signum) to the value
(10) for i, = 3. So, we can assume that ¢ = 1,2, 3.
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Consequently, the operator C? is determined by the VB3 n-gauge-natural
operator

3
C?. 1! </\ T*> ~s Ling(DYT) x TYT), TY(T™))

given by

Xl,X2 eI (TE), H e TL (/\ T*E), where E is a VB3 ,-object with base
M, z*, ..., 2™ are the usual coordinates on R™ 73, w, 1= daz* A ... A daPt?
(since p 2 2, then m > p 4+ 2 > 4, and then w, is well deﬁned) = %
and ... and Ypio 1= o7 §+2 are considered as linear vector ﬁelds on the
VB, n-object E 1= E x R™3 with the base M x R™™ 3.4 :E > Eis
the inclusion y — (y,0) and j* denotes the pull-back with respect to 7. Of
course, CZ = 0.

By Theorem 3.6 for p = 1 (which is proved in [4]), the vector space of all
VB3 n-gauge-natural operators

~12§(X1,X2) = j*iy4 .. 'ti+2C]2§A (Xl X O,Xg X O),
5T
m

3
&1 (/\ T*> < Lina(T(T) x T(T), (1))

with Cy = 0 is of dimension < 5. Consequently, the vector space of all
VB, n-gauge-natural operators

2.1 <p/+\2 T*> ~ Liny (Fl(T ) x T{(T), T (/\ T>>

with CZ = 0 is of dimension < 5.
On the other hand, the system of VB, ,,-gauge-natural operators

p+2
D'.D? D3 D* D°: r’(/\ T*) ~~ Ling (Fl(T x THT),T! (/\ T>>

defined by

D (X', X?) i=ix1ix2H,

D% (XY, X?) = ipixiiy2dH ,
D3 (XY, X?) :=ipiyedix1 H ,
DXL, X?) i=ipixidix2H ,
D3 (XY, X?) = ipdix2ix1 H

is linearly independent. Indeed, if

a'D' + a?D? + a®*D3 + a*D* + D5 = 0,
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then (in particular)
avixiixe H + a®ipixiix2dH + a®ipixedixi H
+ atipixidix2 H 4 a’ipdix2ix1 H =0
for any linear 3-form H and any linear vector fields X!, X2 on R>", where
H=HANw, € Tk (APPPT*R™") and X' = X' x 0, X2 = X2 x0 ¢
I (TR™™) and w, is as above. Then
(aYig1igo H + a®igigiigodH + a%ipigodig H
+atigigidiga H + a®ipdigoigi H) Aw, =0
for any H, X' X2 as above. Then
aigrige H + a%igigigedH + aipigadig H
+ a4iLi5(1diX21:I + a5iLdi)~(2iX1]:I =0
for any I:I,)Z'l,)p as above. Then
ad=d*=d*=a"=d"=0,

because the collection of operators D', D%, D3, D*, D? is linearly indepen-
dent for p =1 and m = 3 and n > 1, see [4].
So, the dimension argument ends the proof of our lemma. O

Lemma 3.9. Let m,n,p be fized positive integers. Any VB, n-gauge-natural
operator

c3. 1 (17\2 T*> ~ Ling (r’(T) x T (/p\ T*>,FZ(T)>

(not necessarily satisfying Cg = 0) is 0.

Proof. Using the invariance of C? with respect to the fiber homotheties, we
get C3y (X, tw) = C3(X,w) for any linear vector field X, any linear p-form
w, any linear (p + 2)-form H on a VB, ,-object E and any ¢t > 0. Putting
t — 0, we get C%(X,w) = C3(X,0) =0. So, C3 =0. O

Lemma 3.10. Let m,n,p be fized positive integers. Any VB, n-gauge-
natural operator

p+2 p p
c*: rl</\ T*> ~ Ling (rl(T) x T (/\T*),Fl (/\T))
such that C§ =0 is 0.

Proof. Using the invariance of C* with respect to the fiber homotheties,
we get Oy (X, tw) = tC4(X,w) for any linear vector field X, any linear
p-form w, any linear (p + 2)-form H on a VB, ,-object E and any ¢ > 0.
Then Cfy;(X,w) = CH(X,w). Putting t — 0, we get C%(X,w) = Ci(X,w).
Then (by the assumption Cj = 0), C4(X,w) = 0. So, C* = 0. O
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Lemma 3.11. Let m,n,p be fized positive integers. Any VB, n-gauge-
natural operator

p+2 p
co T </\ T*> s Ling (Fl (/\ T*) X FZ(T),FZ(T)>
(not necessarily satisfying C§ = 0) is 0.
Proof. It is sufficient to apply Lemma 3.9 for C3(X,w) := C%(w, X). O

Lemma 3.12. Let m,n,p be fized positive integers. Any VB, n-gauge-
natural operator

p+2 P D
cs . rl</\ T*) ~ Ling (Fl (/\ T*> x TH(T),T! </\T>>
such that C§ =0 is 0.

Proof. It is sufficient to apply Lemma 3.10 for C%(X,w) := C%(w, X). O

Lemma 3.13. Let m,n,p be fized positive integers. Any VB, n-gauge-
natural operator

p+2 P p
(ol rl</\ T*) ~ Ling (Fl (/\ T*> x T </\T*>,F’(T)>
(not necessarily satisfying C§ = 0) is 0.

Proof. Using the invariance of C7 with respect to the fiber homotheties,
we get O (tw, tw') = C3(w, w!) for any linear p-forms w and w!, any linear
(p + 2)-form H on a VB, ,-object E and any ¢ > 0. Putting t — 0, we get
CT(w,w') = C{(0,0) = 0. So, CT = 0. O

Lemma 3.14. Let m,n,p be fized positive integers. Any VB, n-gauge-
natural operator

c8 . T (,7\2T) s Ling (Fl (/P\T> x I (7\ T*)’Fl </P\T))

(not necessarily satisfying C§ = 0) is 0.

Proof. Using the invariance of C® with respect to the fiber homotheties, we
get C8y(tw, twy) = tC%(w,wy) for any linear p-forms w and wy, any linear
(p + 2)-form H on a VB, n-object E and any ¢ > 0. Then C8y(w,tw) =
C%(w,w1). Putting t —0, we get C%(w,w;1) = C§(w,0) = 0. So, C¥8=0. O
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4. The generalized twisted D-C brackets with the Jacobi identity
in Leibniz form.

Definition 4.1. Let C be a VB,, ,-gauge-natural operator in the sense of
Definition 3.1. We say that C is a generalized twisted Dorfman—Courant
bracket if it satisfies the initial condition Cy = [[—, —]]o, where [[—, —]]x is
the usual twisted (H-twisted) Dorfman—-Courant bracket as in Example 3.3.

As an immediate consequence of Theorem 3.6, we get

Lemma 4.2. Let m, n > 1 and p > 1 be natural numbers such that m >

p+ 2. Any generalized twisted Dorfman—Courant bracket C is of the form
Cu(X'®w', X2ow?) = X1, X2 ¢ {Ly1w? —ixedw'+

(17) +crixrixeH 4 coipixiixedH

+ csipixedixyi1H + cqipixidixe H

+ csipdix2ix1H}

for any H € TL(NPP2TE), any X' @ w', X2 @ w? € T (TE ® N\’ T*E)

and any VB, n-object E, where c1,ca,c3,cq,c5 are (uniquely determined by

C') real numbers.

Definition 4.3. A VB,, ,-gauge-natural operator C' in the sense of Def-
inition 3.1 satisfies the Jacobi identity in Leibniz form for closed linear
(p + 2)-forms if

(18)  Cu(p',Cu(p® p*) = Cu(Cu(p',p%).p°) + Cu(p®,Culp", p°))
for all closed linear (p + 2)-forms H € T (APT? T*E), all linear sections
pl=X®uw eTL(TE® A\PT*E) for i = 1,2,3 and all VB,, ,-objects E.

Lemma 4.4. Let C' be a generalized twisted Dorfman—Courant bracket of
the form (17). If C satisfies the Jacobi identity in Leibniz form for closed
linear (p + 2)-forms, then

csLxripixsdix2 H + calxripixediys H

+ s Lxripdixaix2 H + CgiLi[X27X3}diX1H

+ caipixrdipx2 x3H + csipdipxz xsix1 H

= —c3tysdipixedix1 H — cqixadipixidix2H

(19) — csiysdipdix2ix1H + cgipixsdipxi x21H

+ C4iLi[X17X2}diX3H + C5iLdiX3dZ'[X17X2]H
+ csLxzipixsdixi H 4+ cgLx2ipixidixs H
+ s Lyzipdixsixi H + CgiLi[X17X3]diX2H
+ C4Z'LZ'X2dZ'[X17X3]H + C5’L'Ldi[X17X3}Z'X2H

for any linear vector fields X', X2, X3 and any closed linear (p + 2)-form
H on R™™.
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Proof. For any linear vector fields X!, X2, X3 and any closed linear (p+2)-
form H on F, we can write

Cy(X'®0,05(X*20,X330)) = X', [X%, X0 Q,
Cu(Cy(X'®0,X?90),X*®0) =X, X?, X3 @0,
Cu(X?@0,Cy(X'@0,X300) = [X4 (X, X% eT,

where
Q=c1Lxrix2ixsH + c3Lxripixsdix2 H
+ calyvipixedixsH + csLxvipdixsix2H
+ crixvipye x3)H + csipipxe xs)dixt H
+ cainixdipye xo H + csipdix> xajix H

O = —crixsdixiix2H — c3ixsdipixedixi H
—cqixsdipixidix2 H — csixsdipdix2ix1 H
+ C1Z'[X17X2}Z'X3H + CgiLixgdi[leXQ}H
+ C4iLi[X1,X2]dZ’X3H + C5Z'LdiX3di[X17X2}H,

T =c1LxeixrvixsH + c3Lx2ipixsdixi H
+ caLxzipixidixsH 4+ cs Ly2ipdixsixi H
+ crixeipx x3)H + esipipx xs)dix2 H
+C4iLiX2di[X1’X3]H+ C5iLdi[X17X3}iX2H.

Since C satisfies the Jacobi identity in Leibniz form for closed linear
(p + 2)-forms,
Q=060+T.

Moreover, the (usual) twisted Dorfman-Courant bracket satisfies the Jacobi
identity in Leibniz form for closed linear (p + 2)-forms. Indeed, the (usual)
twisted Dorfman-Courant bracket is the restriction of the twisted Courant
bracket (which satisfies the Jacobi identity in Leibniz form for closed (p+2)-
forms, see [3]). So, we have 2 = © + 7 in the case c3 = ¢4 = ¢5 = 0, too.
So, we have (19). O

Lemma 4.5. Let C' be a generalized twisted Dorfman—Courant bracket of
the form (17). Let myn > 1 and p > 1 be such that m > p+ 3. If C
satisfies the Jacobi identity in Leibniz form for closed linear (p + 2)-forms,
then cg3 = c4 = ¢c5 = 0.

Proof. Let @, :=dz3 A.. . AdxPtlifp > 2 (then @, is well defined because
m>p+1>3)and @, := 1 if p= 1. Putting linear vector fields X! = %,

X? = 8%2 and X3 = L and the closed linear (p + 2)-form H := zldxz! A
dz? A dy' A @, into (19), we get



The twisted gauge-natural bilinear brackets... 45

c3-0+4cq- (yhdzt AQy) +c5 - (y'dat A,)
4+c3:04+¢c4:-0+c¢5-0
= —c3-ytdaet ANy —cq -0 —c5 - (—ylala;1 A @)
+c3-04+c4-0+c5:-04¢c3-04c4-0
4+¢c5-0+c3-0+c4-04c¢5-0.
Hence ¢3 = —c¢4.

Similarly, let @, be as above. Putting linear vector fields X! = :1:28%1,
X? = %, X3 = L and the closed linear (p+2)-form H := dz! Adz? Ady' A&,
into (19), we get

03-O+C4-y1dx2/\d)o+05-yldx2/\(bo
+c3:04+cs-0+¢c5-0
=—c3-0—c4-0—c5- (—ylde/\&Jo)
+e3-0+cq-ytdae? ANy +c5-0
+c3-04cq - (—ytda® A@o) + c5 - (—ytda® A &,)
+c3:0+ca-0+c5-0.
Hence ¢4 = —cs5.

Now, let @o :=dz® A... AdaPt3 if p > 2 (then @, is well defined because

m >p+3>5), and @, := 1 if p = 1. Putting linear vector fields X! = 0

X2 = xla%m X3 = 8%3 and the closed linear (p + 2)-form H := d(achf;Cl/\,
dz3 A dyt A&, (H is well defined because m > p + 3 > 4) into (19), we get
cs-ytdat A, + ey -0+ c5 - (—ytdat A Q)
+c3:0+cs-0+c5-0
=—c3-0—cy- (yld:L'4/\cD0+x4dyl AN @) —c5-0
+c3-ytdat Ay +es-0+c5-0
+ec3-0+cs-04c¢5-0
+c3-04c4-04c¢5-0.
Hence ¢4 = 0.
Consequently, c3 = ¢4 = ¢5 = 0, as well. O
Thus we have proved

Theorem 4.6. Let m, n > 1 and p > 1 be such that m > p+ 3. Any gen-
eralized twisted Dorfman—Courant bracket C satisfying the Jacobi identity
in Leibniz form for closed linear (p 4+ 2)-forms is of the form

CuX'ouwh, X2ew?) = X1, X @ {Lxy1w? — iy2dw!

+ Clin’l:XZH + CQiLiniX2dH}

(20)
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for any H € TL (NP2 TE), any X' @ w', X? @ w? € T (TE ® N\’ T*E)
and any VB, n-object E, where c1,cy are (uniquely determined by C') real
numbers.

Given c1,c3 € R, the generalized twisted Dorfman—Courant bracket C of
the form (20) satisfies the Jacobi identity in Leibniz form for closed linear
(p+ 2)-forms.

The above theorem implies immediately Theorem 1.2.

REFERENCES

[1] Koléf, 1., Michor, P. W., Slovdk, J., Natural Operations in Differential Geometry,
Springer-Verlag, Berlin, 1993.

[2] Kurek, J., Mikulski, W. M., The gauge-natural bilinear brackets on couples of linear
vector fields and linear p-forms, Ann. Univ. Mariae Curie-Sklodowska Sect. A 75(2)
(2021), 73-92.

[3] Mikulski, W. M., The natural operators similar to the twisted Courant bracket on
couples of vector fields and p-forms, Filomat 44(12) (2020), 4071-4078.

[4] Mikulski, W. M., On the gauge-natural operators similar to the twisted Dorfman—
Courant bracket, Opuscula Math 41(2) (2021), 205-226.

Jan Kurek

Institute of Mathematics

Maria Curie-Sktodowska University

P1l. Marii Curie-Sktodowskiej 1

20-031 Lublin

Poland

e-mail: kurek@hektor.umcs.lublin.pl

Wtodzimierz M. Mikulski

Institute of Mathematics

Jagiellonian University

ul. Lojasiewicza 6

30-348 Cracow

Poland

e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received February 7, 2022



