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A new characterization of strict convexity
on normed linear spaces

Abstract. We consider relations between the distance of a set A and the
distance of its translated set A+x from 0, for x ∈ A, in a normed linear space.
If the relation d(0, A+x) < d(0, A)+‖x‖ holds for exactly determined vectors
x ∈ A, where A is a convex, closed set with positive distance from 0, which
we call (TP) property, then this property is equivalent to strict convexity of
the space. We show that in uniformly convex spaces the considered property
holds.

1. Introduction. Translation of the set as a simple transformation was
not often considered in normed spaces. The distance of the set and of its
translated set from 0 in the space show some regularities. Properties of
the considered space determine the behavior of the mentioned distances for
convex and closed sets in the given normed space. In the main part of this
paper we will show that using this property, we obtain a characterization
of strict convexity of the normed space, but also that uniform convexity
determines the relation between the distance of the set and its translated
set from 0 in the considered normed space.

The metric space in which we have a vector structure is called a linear
metric space. If the metric is obtained from the norm, we call such space
a normed linear space. In what follows we denote by X the normed linear
space. BX = {x ∈ X | d(0, x) ≤ 1} and SX = {x ∈ X | d(0, x) = 1} denote
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the unit ball and the unit sphere in the given space, where the metric is
induced by the norm of the space, d(x, y) = ‖x−y‖. A set A in X is said to
be convex if, for all x and y in A and all λ ∈ [0, 1], the point λx+ (1− λ)y
also belongs to A. By convA and convA we denote the convex hull and the
closure of the convex hull of the set A respectively.

2. Some translation properties. The translation of the set A ⊂ X by
the vector x ∈ X is the set

A+ x = {y + x | y ∈ A} .

Let A be a nonempty subset of a normed space X. For every x ∈ X, the
distance between the point x and the set A is denoted by d(x,A) and is
defined by the following formula

d(x,A) = inf{d(x, y) | y ∈ A} .

Lemma 2.1. Let X be a normed linear space and A ⊂ X be a convex,
closed set with d(0, A) > 0. Then, for all x ∈ A we have d(0, A+ x) > 0.

Proof. Suppose that there exists x0 ∈ A with d(0, A+ x0) = 0. Let (xn +
x0)n∈N be the minimizing sequence such that

d(0, xn + x0) = ‖xn + x0‖ → 0 , n→∞ .

We conclude that xn + x0 → 0 when n→∞, i.e.,

xn → −x0, n→∞ .

Since (xn)n∈N ⊂ A and A is closed, we see that −x0 ∈ A. So, we have
x0,−x0 ∈ A and because of convexity of the set, we conclude that 0 ∈ A.
But this contradicts the assumption that d(0, A) > 0. �

Lemma 2.2. Let X be a normed linear space and let A ⊂ X be a convex
set with d(0, A) > 0. Then for an arbitrary x ∈ A,

d(0, A+ x) > d(0, A) .

Proof. Suppose that for some x0 ∈ A we have

d(0, A+ x0) ≤ d(0, A) .

One can choose minimizing sequences (xn)n∈N ⊂ A and (yn)n∈N ⊂ A+ x0,
that is

(1) ‖xn‖ → d(0, A) , n→∞ ,

(2) ‖yn‖ → d(0, A+ x0) , n→∞ ,

where yn = zn + x0 for some zn ∈ A (n ∈ N) and such that the inequality

(3) ‖zn + x0‖ ≤ ‖xn‖
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holds for almost all n ∈ N. Let ε < d(0,A)
2 be arbitrary. From (1) and (2)

we get
(∃n1 ∈ N) (∀n ∈ N) (n ≥ n1 ⇒ ‖xn‖ < d(0, A) + ε) ,

(∃n2 ∈ N) (∀n ∈ N) (n ≥ n2 ⇒ ‖zn + x0‖ < d(0, A+ x0) + ε) .

Let n0 = max{n1, n2}. Then for all n ∈ N,

(4) n ≥ n0 ⇒ ‖xn‖ < d(0, A) + ε ∧ ‖zn + x0‖ < d(0, A+ x0) + ε .

Since x0 and zn belong to the set A which is convex, for an arbitrary
λ ∈ [0, 1] we have λx0 + (1− λ)zn ∈ A. In particular, for λ = 1

2 , because of
(3), the following inequality holds∥∥∥∥12x0 + 1

2
zn

∥∥∥∥ ≤ 1

2
‖xn‖ .

Using (4) and the choice of the ε, we get∥∥∥∥12x0 + 1

2
zn

∥∥∥∥ < 1

2
(d(0, A) + ε) <

3

4
d(0, A) .

So, x∗ =
1

2
x0 +

1

2
zn ∈ A and

‖x∗‖ < 3

4
d(0, A) < d(0, A) = inf{‖x‖ | x ∈ A} ,

which is an obvious contradiction. �

In the general case, if the distance of the set A from 0 is obtained by the
sequence (xn)n∈N ⊂ A, i.e.,

‖xn‖ → d(0, A) , n→∞ ,

then for x0 ∈ A the sequence (xn + x0)n∈N does not have to be minimizing
for the distance of the set A+x0 from 0. Indeed, consider the space R2 with
the Euclidean metric and A ⊂ R2 given by A = {(x, y) ∈ R2 | x = 1 , y ∈
[−1, 1]}. The set A is clearly convex and closed and equality d(0, A) = 1 =
d((0, 0), (1, 0)) holds. Consider then x0 = (1, 1) ∈ A and translation of the
set A by this vector, i.e.,

A+ x0 = {(x, y) ∈ R2 | x = 2 , y ∈ [0, 2]} .
Then

d(0, A+ x0) = inf{d((0, 0), (x, y) + (1, 1)) | (x, y) ∈ A}
= inf{d((0, 0), (2, y + 1)) | y ∈ [−1, 1]}

= inf
{√

4 + (y + 1)2 | y ∈ [−1, 1]
}

= 2 = d((0, 0), (2, 0)) .

Since d(0, A) = d(0, x∗), where x∗ = (1, 0) ∈ A and since

d(0, x∗ + x0) = d((0, 0), (2, 1)) =
√
5 ,
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we have
d(0, A+ x0) = 2 <

√
5 = d(0, x∗ + x0) .

Lemma 2.3. In the general case of a normed linear space X, for A ⊂ X
and α ∈ R we have
1. d(x, αA) = |α|d(α−1x,A) for an arbitrary x ∈ X.
2. d(x,A) = d(x+ y,A+ y) for arbitrary x, y ∈ X.
3. d(x, x+ z) = d(y, y + z) for arbitrary x, y, z ∈ X.

Lemma 2.4. Let X be a normed linear space and A ⊂ X be such that
d(0, A) > 0. For an arbitrary x ∈ A it holds

d(0, A+ x) ≤ d(0, A) + ‖x‖ .
Proof. Let x ∈ A be arbitrary and fixed. Then

A+ x = {a+ x | a ∈ A} .
For an arbitrary y ∈ A we have

d(0, A+ x) = inf{‖a+ x‖ | a ∈ A} ≤ ‖y + x‖ ≤ ‖y‖+ ‖x‖ .
Since the left hand side of the above inequality does not depend on y, we
see that

d(0, A+ x) ≤ inf{‖y‖+ ‖x‖ | y ∈ A} = inf{‖y‖ | y ∈ A}+ ‖x‖
= d(0, A) + ‖x‖ . �

Lemma 2.5. Let X be a normed linear space and let A ⊂ X be a convex and
closed set with d(0, A) > 0. If there exists x∗ ∈ A such that d(0, A) = ‖x∗‖,
then for all t ∈ [1,+∞) such that tx∗ ∈ A, we have

d(0, A+ tx∗) = d(0, A) + t‖x∗‖ .
Proof. Let t ∈ [1,+∞) be such that tx∗ ∈ A. Lemma 2.4 implies

d(0, A+ tx∗) ≤ d(0, A) + ‖tx∗‖ = d(0, A) + t‖x∗‖ .
Suppose that d(0, A+ tx∗) < d(0, A) + t‖x∗‖. Then there exists y ∈ A such
that

‖y + tx∗‖ < d(0, A) + t‖x∗‖ = (1 + t)‖x∗‖ .
We conclude that ∥∥∥∥ 1

1 + t
y +

t

1 + t
x∗
∥∥∥∥ < ‖x∗‖

and since the set A is convex, 1
1+ty + t

1+tx
∗ ∈ A holds. Hence, the last

inequality gives a contradiction with the assumption that d(0, A) = ‖x∗‖.
Therefore

d(0, A+ tx∗) = d(0, A) + t‖x∗‖ . �

As a special case of Lemma 2.5, for t = 1, there exists x∗ ∈ A such that
d(0, A) = ‖x∗‖ and the following equality holds

d(0, A+ x∗) = 2‖x∗‖ = 2d(0, A) = d(0, A) + ‖x∗‖ .
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3. Main results. We recall some notions.
The normed space X is called uniformly convex, for short (UC), if for

every ε, 0 < ε ≤ 2, there exists δ = δ(ε) > 0 such that for every x, y ∈ BX ,∥∥∥∥x+ y

2

∥∥∥∥ > 1− δ ⇒ ‖x− y‖ < ε ,

or equivalently

‖x− y‖ ≥ ε⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ .

The normed space X is called strictly convex, for short (SC), if its unit
sphere SX does not contain nontrivial segments, that is, for every x, y ∈ SX ,
x 6= y, [x, y] 6⊂ SX . This means that for all t ∈ (0, 1), we have ‖(1 − t)x +
ty‖ < 1, or equivalently, if the equality ‖(1 − t)x + ty‖ = 1 holds for some
x, y ∈ SX and some t ∈ (0, 1), then x = y. For more about uniform and
strict convexity see [1] and [3].

The following proposition contains some equivalent conditions for strict
convexity (see [2]).

Proposition 3.1. For a normed space X, the following conditions are
equivalent:

(1) X is strictly convex;
(2) for every x, y ∈ SX with x 6= y, ‖x+ y‖ < 2;
(3) for every x, y ∈ X\{0}, the equality ‖x + y‖ = ‖x‖ + ‖y‖ implies

y = αx for some α > 0.

Evidently, every (UC) space is a (SC) space.
Lemma 2.5 holds for the spaces that have the property that for a convex

and closed set A, with d(0, A) > 0, there exists x∗ ∈ A such that d(0, A) =
‖x∗‖. For example, Hilbert and reflexive spaces have this property.

Let X be a normed space, ∅ 6= Z ⊂ X and x ∈ X. By PZ(x) we denote
the set

PZ(x) = {z ∈ Z | d(x, Z) = ‖x− z‖} .
In [2], it was shown that if Z is a convex and closed set and X is a strictly
convex space, then the following holds

(∀x ∈ X \ Z) card(PZ(x)) ≤ 1 .

In particular, if X is a uniformly convex space, then

(∀x ∈ X \ Z) card(PZ(x)) = 1 .

It is clear that Lemma 2.5 holds in (UC) spaces, but it is also clear that
this assertion can not be applied to (SC) spaces because we do not know if
there exists x∗ ∈ Z such that d(0, Z) = ‖x∗‖.

Let us prove a few auxiliary claims.
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Lemma 3.2. Let X be a normed linear space and x, y ∈ X be nonzero
vectors such that ‖x + y‖ = ‖x‖ + ‖y‖. Then for vectors x0 = x

‖x‖ , y0 =
y
‖y‖ ∈ SX the equality ‖x0 + y0‖ = 2 holds.

Proof. Let x ∈ X be an arbitrary nonzero vector and x0 = x
‖x‖ . Consider

the set A = {λx | λ ∈ (0,+∞)}. Suppose that A ∩ SX = {x1, x2}. Because
x1, x2 ∈ A, there exist λ1, λ2 ∈ (0,+∞) such that x1 = λ1x and x2 = λ2x.
Because x1, x2 ∈ SX , we have ‖λ1x‖ = ‖λ2x‖ = 1, so we conclude that
λ1 = λ2, that is x1 = x2. Obviously, for λ = 1

‖x‖ , x0 ∈ A and ‖x0‖ = 1,
that is x0 ∈ SX . Therefore, A ∩ SX = {x0}.

Let x, y ∈ X be nonzero vectors such that ‖x+ y‖ = ‖x‖+ ‖y‖. Without
lost of generality let ‖x‖ > 1 and ‖y‖ > 1. Suppose that for vectors x0 = x

‖x‖
and y0 =

y
‖y‖ the inequality ‖x0 + y0‖ < 2 holds. Now we have

‖x+ y‖ = |‖|x‖x0 + ‖y‖y0||
= ‖(x0 + y0) + (‖x‖ − 1)x0 + (‖y‖ − 1)y0‖
≤ ‖x0 + y0‖+ (‖x‖ − 1)‖x0‖+ (‖y‖ − 1)‖y0‖
< 2 + ‖x‖ − 1 + ‖y‖ − 1 = ‖x‖+ ‖y‖.

This contradicts the initial assumption ‖x + y‖ = ‖x‖ + ‖y‖. As it is true
that ‖x0 + y0‖ ≤ 2, we conclude that it must be ‖x0 + y0‖ = 2. �

Lemma 3.3. Let X be a normed linear space and x, y ∈ SX . It holds
[x, y] ⊂ SX if and only if ‖x+ y‖ = 2.

Proof. Let x, y ∈ SX be such that ‖x+ y‖ = 2. For an arbitrary λ ∈ [0, 1]
it holds

‖(1− λ)x+ λy‖ ≤ 1.

Suppose that there exists λ0 ∈ (0, 1) such that ‖(1−λ0)x+λ0y‖ < 1. Then
we have

2 = ‖x+ y‖ = ‖(1− λ0)x+ λ0y + λ0x+ (1− λ0)y‖
≤ ‖(1− λ0)x+ λ0y‖+ ‖λ0x+ (1− λ0)y‖
< 1 + λ0 + (1− λ0) = 2,

which is a contradiction. Therefore, for all λ ∈ [0, 1] it holds (1−λ)x+λy ∈
SX , that is [x, y] ⊂ SX .

Conversely, assume that [x, y] ⊂ SX (x 6= y). Then x+y
2 ∈ SX , that is

‖x+ y‖ = 2. �

Lemma 3.4. Let X be a normed linear space and x, y ∈ X be such that the
equality ‖x+ y‖ = ‖x‖+ ‖y‖ holds. Then, for arbitrary α, β ∈ R+ it holds

‖αx+ βy‖ = α‖x‖+ β‖y‖.
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Proof. Let x, y ∈ X be such that

(5) ‖x+ y‖ = ‖x‖+ ‖y‖.
For arbitrary α, β ∈ R+ then it holds

(6) ‖αx+ βy‖ ≤ α‖x‖+ β‖y‖.
If the vectors x and y are collinear, that is, x = λy, λ ∈ R+, then we have

‖αx+ βy‖ = ‖αλy + βy‖
= |αλ+ β| ‖y‖ = α‖λy‖+ β‖y‖
= α‖x‖+ β‖y‖.

Now, suppose that x and y are not collinear. Based on Proposition 3.1, this
means that X is not an (SC) space. Let α, β ∈ R+ be such that

(7) ‖αx+ βy‖ < α‖x‖+ β‖y‖.
Let λ1, λ2 ∈ R+ be such that x = λ1x0 and y = λ2y0, where x0, y0 ∈ SX .
Based on the Lemma 3.3 and Lemma 3.2, we have [x0, y0] ⊂ SX . The
inequality (7) becomes

‖αx+ βy‖ < αλ1‖x0‖+ βλ2‖y0‖ = αλ1 + βλ2.

Dividing this inequality by αλ1 + βλ2 6= 0 we get

(8)
∥∥∥∥ αλ1
αλ1 + βλ2

x0 +
βλ2

αλ1 + βλ2
y0

∥∥∥∥ < 1.

Because the vector x = αλ1
αλ1+βλ2

x0 +
βλ2

αλ1+βλ2
y0 is a convex combination of

vectors x0 and y0, this means x ∈ SX , which contradicts (8). So, using (6),
we get

‖αx+ βy‖ = α‖x‖+ β‖y‖ . �

Theorem 3.5. Let X be a uniformly convex space and let A ⊂ X be a
convex, closed set with d(0, A) > 0. For x∗ ∈ A such that d(0, A) = ‖x∗‖,
we denote

Ax∗ = {z ∈ A | z = λx∗ for some 1 ≤ λ < +∞} .
Then for all x ∈ A \Ax∗ we have

d(0, A+ x) < d(0, A) + ‖x‖ .

Proof. For arbitrary x ∈ A, using Lemma 2.4, we have

d(0, A+ x) ≤ d(0, A) + ‖x‖
and if x ∈ Ax∗ , then

d(0, A+ x) = d(0, A) + ‖x‖ .
So, let x ∈ A \Ax∗ be arbitrary and let us suppose that

d(0, A+ x) = d(0, A) + ‖x‖ .
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Since A+ x ⊂ X is convex and closed, because of uniform convexity of the
space, there exists y∗ = x′ + x ∈ A+ x such that

(9) ‖y∗‖ = d(0, A+ x) = ‖x′ + x‖ = d(0, A) + ‖x‖ = ‖x∗‖+ ‖x‖ .
Since every (UC) space is also an (SC) space, and since vectors x∗ and x
are not collinear it holds

(10) ‖x∗ + x‖ < ‖x∗‖+ ‖x‖ .
Using (9) and (10), we conclude that

‖x∗ + x‖ < ‖x′ + x‖ = ‖y∗‖ = d(0, A+ x) .

Since x∗ + x ∈ A+ x, this is an obvious contradiction, so we have

d(0, A+ x) < d(0, A) + ‖x‖ . �

For simplicity we use the following notation. We say that a normed space
X has the translation property, X is a (TP) space for short, if every convex,
closed set A with positive distance from 0, such that there exists x∗ ∈ A
with d(0, A) = ‖x∗‖, satisfies the condition d(0, A + x) < d(0, A) + ‖x‖ for
all x ∈ A \Ax∗ . Now, Theorem 3.5 tells us that every (UC) space is a (TP)
space.

Consider the space l1 with the norm

‖x‖ = ‖x‖l1 + ‖x‖l2 =
∞∑
n=1

|xn|+

( ∞∑
n=1

|xn|2
) 1

2

.

It is clear that for arbitrary x ∈ l1 we have

‖x‖l1 ≤ ‖x‖ ≤ 2‖x‖l1 ,
so these two norms are equivalent. The standard space l1 is not reflexive,
therefore l1 is nonreflexive after renorming with the equivalent norm ‖ · ‖.
Consequently, the renormed space l1 is not a (UC) space, since uniform
convexity implies reflexivity ([1]).

We will show that the renormed space l1 is a (TP) space. Let A ⊂
l1 be a convex, closed set for which exists x∗ = (ξn)n∈N ∈ A such that
d(0, A) = ‖x∗‖ > 0. Suppose there exists z = (zn)n∈N ∈ A \ Ax∗ with
d(0, A+ z) = d(0, A) + ‖z‖. Then,

d(0, A+ z) = d(0, A) + ‖z‖ = ‖x∗‖+ ‖z‖ ≥ ‖x∗ + z‖ ≥ d(0, A+ z) .

We conclude that ‖x∗ + z‖ = ‖x∗‖+ ‖z‖. Hence,

∞∑
n=1

|ξn + zn|+

( ∞∑
n=1

|ξn + zn|2
) 1

2

=

∞∑
n=1

|ξn|+
∞∑
n=1

|zn|+

( ∞∑
n=1

|ξn|2
) 1

2

+

( ∞∑
n=1

|zn|2
) 1

2

.
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Equality in the general Minkowski inequality holds if and only if ξi · zi ≥ 0
(i ∈ N), for p = 1, that is |zi|p = c|ξi|p (i ∈ N), for p > 1. In our case this
means that for all n ∈ N we have zn = cξn for some c > 0, i.e., z = cx∗.
This is a contradiction with the choice of the element z ∈ A \ Ax∗ . Thus,
for an arbitrary z ∈ A \Ax∗ ,

d(0, A+ z) < d(0, A) + ‖z‖
holds and because of arbitrariness of the set A, this establishes the trans-
lation property of the renormed space l1. This proves that there exists a
(TP) space that is not a (UC) space.

Theorem 3.6. Let X be a normed linear space and let A ⊂ X be a convex,
closed set with d(0, A) > 0 such that there exists x∗ ∈ A with ‖x∗‖ = d(0, A).
The inequality

d(0, A+ x) < d(0, A) + ‖x‖ ,
holds for all x ∈ A \Ax∗ if and only if the space X is strictly convex.

Proof. Suppose that the space X is not a (TP) space. This means that
there exists a closed and convex set A ⊂ X for which there exists x∗ ∈ A
such that d(0, A) = ‖x∗‖ > 0 and there exists x ∈ A\Ax∗ such that

d(0, A+ x) = d(0, A) + ‖x‖ .
Therefore,

d(0, A+ x) = ‖x∗‖+ ‖x‖ ≥ ‖x∗ + x‖ ≥ d(0, A+ x) .

We conclude that
‖x∗‖+ ‖x‖ = ‖x∗ + x‖ .

Since x∗ and x are not collinear, we conclude that the space X is not strictly
convex. Using contraposition, we get that if X is (SC), then X is (TP).

Suppose now that space X is not strictly convex. This means that there
exist x, y ∈ SX , x 6= y and [x, y] ⊂ SX or equivalently

(∀λ ∈ [0, 1]) λx+ (1− λ)y ∈ SX .
Consider the set A = conv

{
x, y, x+y4

}
. It is obvious that A is a convex and

closed set. Suppose now that there exists a ∈ A with ‖a‖ < 1
2 . This means

that there are µ1, µ2, µ3 ≥ 0 such that

a = µ1x+ µ2y + µ3x
∗ , µ1 + µ2 + µ3 = 1 ,

where x∗ = x+y
4 . Then we have

‖a‖ =
∥∥∥∥µ1x+ µ2y + µ3

x+ y

4

∥∥∥∥ =
∥∥∥(µ1 + µ3

4

)
x+

(
µ2 +

µ3
4

)
y
∥∥∥ .

Based on Lemma 3.4, we now have

‖a‖ = µ1 + µ2 +
µ3
2

= 1− µ3
2
<

1

2
,
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which means that µ3 > 1. This is of course impossible due to the conditions
on the coefficients in the decomposition of the vector a. So for every a ∈ A
we have ‖a‖ ≥ 1

2 . Because x∗ ∈ A and

‖x∗‖ =
∥∥∥∥12
(
x+ y

2

)∥∥∥∥ =
1

2
,

since x+y
2 ∈ SX , we conclude that d(0, A) = 1

2 .
Since x and x∗ are not collinear, we get x ∈ A \ Ax∗ . Let us make the

translation of the set A by the vector x. We have∥∥∥x
2

∥∥∥ =
1

2
= ‖x∗‖ and

∥∥∥x
2
+ x
∥∥∥ =

3

2
, ‖x+ x∗‖ ≤ 3

2
.

From Lemma 3.4 we have

(11) ‖x+ x∗‖ =
∥∥∥∥54x+

1

4
y

∥∥∥∥ =
5

4
+

1

4
=

3

2
.

Suppose there exists a ∈ A such that ‖a + x‖ < ‖x∗ + x‖. Then a =
µ1x + µ2y + µ3x

∗, where µ1 + µ2 + µ3 = 1 and µ1, µ2, µ3 ≥ 0. Now again
based on Lemma 3.4, we have

‖a+ x‖ =
∥∥∥(µ1 + µ3

4
+ 1
)
x+

(
µ2 +

µ3
4

)
y
∥∥∥

= µ1 + µ2 +
µ3
2

+ 1 = 2− µ3
2
.

Due to the assumption ‖a + x‖ < 3
2 we now have 2 − µ3

2
<

3

2
, which

is equivalent to µ3 > 1. This is a contradiction with the choice of the
coefficient µ3.

Therefore, for any a ∈ A we have ‖a + x‖ ≥ ‖x∗ + x‖ = 3
2 . Because

x∗ ∈ A, we conclude that

(12) d(0, A+ x) = inf
a∈A
‖a+ x‖ = ‖x∗ + x‖.

Using (11) and (12), we conclude that

d(0, A+ x) = d(0, A) + ‖x‖ .

Therefore, if the space is not an (SC) space, then it is possible to construct
a convex, closed set A such that d(0, A) = ‖x∗‖ > 0 for some x∗ ∈ A, so
that there exists x ∈ A \ Ax∗ for which d(0, A + x) = d(0, A) + ‖x‖. This
means that the space is not a (TP) space. Using contraposition, we get the
result. �

Theorem 3.6 tells us that the translation property is equivalent to strict
convexity, which gives a new characterization of strict convexity.
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