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ABSTRACT. The purpose of this article is to define some intermediate g-
Lauricella functions, to find convergence regions in two different forms, and
to prove corresponding reduction formulas by using a known lemma from our
first book. These convergence regions are given in form of g-additions and
g-real numbers. The third g-real number plays a special role in the compu-
tations. Generating functions are proved by using the g-binomial theorem.
Finally, special cases of g-Lauricella functions as well as confluent forms in
the spirit of Chandel Singh and Gupta are given.
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14 T. Ernst

1. Introduction

This paper is part of a series of papers on multiple ¢g-hypergeometric func-
tions, where hypergeometric formulas are simply g-deformed by the author’s
logarithmic notation. The same goes for the convergence regions, where he
author’s g-real numbers are used. That is why these g-real numbers are
introduced in Section 2. Many attempts have been made to generalize the
Appell, Lauricella and Lauricella triple functions by Exton [9], [10], by Sri-
vastava [13], [14] (to four variables) and by Qurechi et al. [12] (to four
variables), etc. The most successful generalization was by Karlsson [11],
who introduced “symmetric” intermediate Lauricella functions. It seems
that “more general forms” of multiple hypergeometric functions, which lack
symmetry, do not give concise, short formulas.

Therefore, we strictly follow Karlsson’s paper [11] and show that it leads
to nice formulas and convergence regions. In the process, one of his formulas
is corrected. In order to do this, we need to remind the reader of the g-real
numbers from [8]. First, however, we present some notation from [2].

Definition 1. Let 6 > 0 be an arbitrary small number. We will always use
the following branch of the logarithm: —7 + ¢ < Im(logq) < 7w+ §. This
defines a simply connected space in the complex plane.

The power function is defined by

qa = @ log(q) ]

The g¢-shifted factorial is defined by

n—1
(@iqm =[] (1 —q""™).
m=0
Definition 2. A g-analogue of [1, p. 198]:
(k)@Xg(a, b, bki1s.- -y bpiClye o Cn| G, X))

3 (@; Q) b5 @+ tm g1 (053 Dim, o
— [[=i(cjs @m; (L @)
A g-analogue of [1, p. 198]:

(k)(I)(An]%(a, bla s ,bn;C, Ck+15---,Cn | q;21, - - - ,LL’n)

Z <a§ Q>m H?:l (bj; Q>mj fm
— (¢ Qi+t (L O T =gy 1 (655 Qm
A g-analogue of [1, p. 198]:

(k)q)](gn]%(aa Af+1,- - - 7anab17 e ',bﬂ;C‘Q;xla s 7$n)

Z <a; Q>m1+...+mk H?:k+1<aj; Q>m]~ H;z:1 <bj; Q>mj f’ﬁ
-y (¢ @)m(L; q)m
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A g-analogue of [11, p. 212]:

(k)q)gl]%(a) ba b17 .. ')bk‘;cvck‘-i-lv s )C’n|q; Iy, .. .,.’En)

Z <CL; Q>m<b§ Q>mk+1+...+mn H§:1 <bj§ q>m]~ f'r'n'

m <c§ Q>m1+---+mk <1; q>7ﬁ H;'l:k—i-l <cj; q>mj

The function (k)cbg&)} contains @Xl) (a,g;é’ | Z) in the special case k = 0,
and @gl) (a,b;¢| q; %) in the special case k = n.

The function (k)éxg contains @Xl) (a, b; ¢ |q; T) in the special case k = 0,
and <I>](3n) (a,b;c|q; &) in the special case k = n.

The function (k)fbg% contains @1(3”)(&’, bic | ¢; ¥) in the special case k = 0,
and <I>](3n) (a,b;c|q; &) in the special case k = n.

The function (k)@)(c% contains <I>(Cn) (a,b; €| ¢; ¥) in the special case k = 0,

and <I>](3n) (a,b;c|q; &) in the special case k = n.
2. Survey of g-real numbers

The g-real numbers give a convenient notation for g-additions in formal
power series, in particular for g-exponential and g-trigonometric functions.
There is a one-to-one correspondence between the convergence regions of

the two g-Lauricella functions @XL) and Q(Cn ) [3, 4] and the existence of ¢-
real numbers with n letters (or variables). There are three types of g-real
numbers [8]: Rg, , compare with [5], R, and Rg, .

Definition 3 ([2, p. 24]). Let a and b be elements of a commutative semi-
group. Then the NWA g¢-addition is given by

n

(a®qb)" = Z <Z> a"o" % n € Ny.
q

k=0

In particular, (a ®q b)? = 1. Furthermore, we put

(a4 6qb)" = zn: <Z>q a*(=b)"*, n € No.

k=0

Definition 4. Let a and b be elements of a commutative semigroup. The
Jackson-Hahn-Cigler g-addition (JHC) is the function

n - n k n— n b
(a4 b) Ez<k>qq(2) Vian Tk = ¢ <—a;q>n,n€NO.

k=0
The JHC g-subtraction is defined analogously:

(@B, )" = zn: (Z)q ¢ (—b)Fa"F, n e N.

k=0
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We just give a brief survey of these three g-real number definitions from [8].

Definition 5 ([2]). The ¢g-multinomial coefficient is defined by

1) ( n ) _ (1;q)n

kika, .o km) o (L@ L@k - (L Dk,
where k1 4+ ko + ... + k;, = n. If the number of &; is unspecified for m = oo
in (1), we denote the ¢g-multinomial coefficients by

n [}
<E>q7 ;]{ZZ =n.

For m € N” put
M| =m1+ ...+ my.

The g-real number Rg, , which appears inside the paranthesis of (2), is
defined by

(2) (a1 ®gag Dyq ... Bgan)® = Z H(al)ml <:‘i> .
m|=k =1 !

The g-real number R,, which appears inside the paranthesis of (3), is defined

In formula (3) we have to multiply every term (a;)™ by (—1)mlq(n;l) if a
minus and/or a B, is preceded by a; in F'(k).

Definition 6. Assume that m = (mq,...,my), m=mi+...+m, and a €
R*. The vector g-multinomial-coefficient (%); is defined by the symmetric
expression

m
2

<a>q _ <<—a; gm(—1)mg~(2)Fem

gy L @)y (L @y - (L5 Dy,

Definition 7. Let the JHC g-real numbers Rg, with n+1 letters be defined
as follows:

(4) R, = {18, ¢"z1 8y --- By ¢"zn},

{zx}] € R, a € R, |zx] < 1,0 < ¢ < 1. When any xy, is negative, we replace
H, by H,. This means that the JHC g-real numbers in (4) are functions of
n + 1 real numbers {4}, a.

The following formula applies to a g-deformed hypercube of length 1
in R™.
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Definition 8. Assuming that the right-hand side converges, and a € R*:

(5) (1Bgq"z1Hg--Beq'zn) ™ = Z

The g-real number in (4) exists only when the series (5) or (6) converges.

The following formula applies to a g-deformed hyper-rhombus of length 1

in R™.

Corollary 2.1. A generalization of the g-binomial theorem:

(6) (18, ¢ By By )0 = 3 80T e
o (L;0)m

3. Convergence regions

Consider the first g-real number z,. When we write
Tg = 21| By ... Bq |zn| <1,
[3, 4], we mean
(|z1] ®q .- @ |za)* < 1, k€N, k> ko,

where kg is the supposed maximum exponent of z,, compare [2].

We shall give convergence regions in two different forms; one of these

forms use the third ¢-real numbers.
Put [11]

K= Zml, N = Z mj.
j=k+1

Theorem 3.1. The convergence region for UC)CDX% 18

(18, ¢" 218, 8, ¢ ) K <1,

V0T &g - &g V|zk| < 1.

For q close to 1, this can also be described as

(V|1 Dg -+ Dg Vv lfﬂk‘)Q Dq | T k1] Dq -+ Dy lzn| < 1.



18 T. Ernst

Proof. Put all parameters equal to unity and consider the series

0=y (L kN QK ‘am
= - -
(TG @ m) )2 (L @ [ g1 (1 @y
o) 2
(1;q) K ] m;
= 2 A= | Il™
mi,...,mi=0 [HJ:1<1’q>m] j=1
= I+ KN [T gy 2™
X Z HT} <1. > ]
j:k+1 ’q mj

Mot 1oy M =0
The second series is equal to
(18, q1+ka+1 By---Hy q1+KfUn)_1_K
and the first one is
oM (1, 1,1, 51, g e, ),
with known convergence region.

Theorem 3.2. The convergence region for (k)q)xg 18
(18, " 2118, ...8, ¢ a,) K < 1

For q close to 1, this can also be described as

(max((ai],..., leal)) B [rs1] By ... D laal < 1
Proof.
gy = Z <1;qn>K+N ‘£|m
- <1;Q>K Hj:k+l<1;>mj

- (14 K; ) [Ty l2™

o k
= Z H || Z H?:k+1<15q>mj

mi,...,mp=0 j=1 M1y, Mn=0
The second series is again equal to

(18, qHkaH B,...H, qHKa:n)*l*K.

Theorem 3.3. The convergence region for (k)fbgg 18

max(|z1],...,|zs]) < 1.
Proof. Put
o=y (L) k [Tfpi1 (L @) m; Mm
s (L) k4w '
m
Clearly,

- m
o3 <> x|,
m
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which converges for
max(|z1],...,|z.]) < 1. O

Theorem 3.4. The convergence region for (k)q)g% 18

max(|z1],...,|zk]) <1, V]xps1]| Bq - - Bg V|zn| < 1.
For q close to 1, this can also be described as
(max(|a1l,... |za]) @q (V]zrs1] @q - - @q V]zal)® < 1.

Proof. Put
Y = max(|z1], ..., |zk])-
Consider the series

_ = (Lig)n g mg
=2 [H” <1;q>mj] LI leif" e

Mg 1eeeyMn =0 J=k+1 j=k+1

We have put

o i 1+ Niq)k [Ty ;™
° (Lo

mi,...,mp=0

B = (1+N;
_pzz(:) (1;q)

> k
e ST ™.

P K=pj=1

Again, one of the terms in the last series is Y?. Then we have

. >§:<1+N;q>py”_ 1
’ = Ly Yig)ien'
which implies
1 (n—k)
04> —"— 1,1;1,...,1 | q;|x ey |Tnl).
4 Y:q)sn © ( | ¢ |Tt1] |Zn)

As before, the number of terms in the sum with K = p is less than (p+ 1),
and for every e > 0 there is A > 0 such that (p 4+ 1)¥ < A(1+ €)?, ¥p > 0.
This implies

o0
14+ N;q),A(1 pyp 1
G5<Z<+ 1 q)pA(l +€) A
= (L) (L+eY;q)14n
and
1 _
o4 < A U1, 151, 1 g lagals - )

(L+6)Y;9)14n

Since € is arbitrary small, because of the double inequality for o4, we obtain
the stated convergence regions. ]
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4. Reducible cases

There are three reducible cases, for @XLI)), @gg and @gg, which all use the
following reducibility case from [2]. We shall use the following abbreviations:

bEZbi, N = Zn: m;,
i=1 j=k+1

where {m; };‘:k 41 are the summation indices in the corresponding multiple
g-series.

Lemma 4.1 (]2, 10.143]).

(I)]()k) (Aa blv sy bkn C | q; qu_A_b+b2+...+bk7

(7) pqCATb bty C—Aby

= 201 (A,b;C | ¢;2q” A7),

Theorem 4.2. A reduction formula for Uﬂ@g{% and a g-analogue of [11,
p. 219]:

c—a—b—N+bo+...+by
b

k) g (1) . )
()(PAD[a,bh...,bn7C,Ck+1,...,Cn q,xq
—a—b—N+b3+...4b —a—b—N
xq“ 3 A 7 ,xkﬂ,...,xn}

c—a—b—N

:(I)(An—k—f—l)[a,bl‘l—.--‘f‘bk,bk-i-l,--'abn ¢ 2q 7

CCk+1y---,Cn

$k+1a"'7xn:|-

Proof.

J

LHS — Z <a§ Q>mk+1+...+mn H?:k’-i-l <bj' Q>mj x;n
H?:k-i-l <Cj7 1; Q>mj

MmE+1;---Mn

cfa7b7N+b2+...+bk
9

(I)l()k){ a~+mgr1+ ..o+ My, by, by ¢ 2q

Cc

C—a—b—N-i—bg-i—...-i—bk,
s

g

c—a—b—N
o]

m;
J

by:(7) Z <(I7 Q>mk+1+...+mn H_?:k-‘,—l <b]a Q>m3m
H;’L:k-H <Cj> 1; q>7nj

My 1,--3Mn

X 901 (a4 My + ... +mp, byc | ¢;2¢c " N) = RHS. O
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Theorem 4.3. A reduction formula for (k)@gg and a g-analogue of the
corrected version of [11, p. 220 (5.2)]:

(k) <I>(”)

. . —a—b+N+bo+...+b
BD|:aaakJrla"'7a’n;b17--~7bn7c ‘Q75L‘qc b NHba +k7

c—a—b+N—+bz+...+by c—a—b+N

xq 3 k,...,l’q 7xk+17"'7xn:|
_(l)q)(n—k+1) aaak+17"'7an7bl+---+bk‘7bk‘+17"'7bn .
= BD c q;

c—a—b+N
xq ,$k+1,...,.’lfn:|.

Proof.
m;

Z [Li=rs18aj; @m; (bjs @),

LHS =
<C; Q>mk+1+.‘.+mn H?:l <17 q>m]

MEk41,---yMn

(k) a,by,..., by
ol [

c—a—b+N+bo+--+by
c+mgs1+ ... +my ’

‘q;xq

c—a—b+N+bs+...+by
5.

g

c—a—b+N
..,2q }

by (7) Z H;L:;H_l (aj,bj; Q>mj x;nj
(6 Qmpirttmn =1 (15 @),

MEg415--51Mn

X 91 (a,b; ¢+ mpyr + ... +my | ¢ 2g¢ ) = RHS. O

Theorem 4.4. A reduction formula for (k)q)g% and a q-analogue of [11,
p. 220 (5.3)]:

k) g (1) . « o C—a—b—N+by+...4b
()(I)CD|:CL,B,bl,...,bk,C,Ck+1,...,Cn q;xq 2 k,
c—a—b—N+b3z+...+b c—a—b—N
xq ? Fooooxq ,l’k+1,...,$n]
1) g (n—k-+1) . o eab-N
:()<I>CD [a,B,b,c,ckH,...,cn ‘q,xqc @ ,xk+1,...,xn].
Proof.

LHS = Z <a7 B7 Q>mk+1+...+mn H?:k—‘,-l ﬂf;nj
H?:k—&-l <cj7 L; Q>mj

MEg415---Mn

q)(k) a -+ MEg+1 + .My, bla cee 7bk . c—a—b—N+ba+...+bg
D c q7 xq )
pqe=a—b-N+batotby ,xqc—a—b—N]

by (7) Z (a, By @)y 1+ tmm H?:kﬂ x;nj
H;L:k—i-l (Cja 1; Q>mj

Mp415--Mn

X 91 (a4 Mppy + ... +mp, byc | ¢;xgc " N) = RHS. O
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There are several generating functions, we just state one. The proofs use
the g-binomial theorem.

n)

Theorem 4.5 (A g-analogue of [1, p. 204]). Generating function for (k)q)(AC :

1 Z (@5 @) (b5 Dyt [=pr1 (s Dm m;
(; @)a TG (cs @y, (1 @) (9% @)im

by [2, 727)]2 aq tr(k ()(a_,_rbka,,,,,bn;cl,...,cn

anla"'axn)'

Confluent functions were given in [6]. Such confluent forms are obtained
by letting parameters — oco.

Definition 9 (Confluent forms). A g-analogue of [1, p. 199]:

(1)(k)q>glc)(aa b, bk+27 coybpser, e | q;T1, .- - 7$n)
= lim (k)<I>Xg(a,b, Dktls- s DniClyee oy Cn | GGX1, .o, Tp).
bk+1—>oo

A g-analogue of [1, p. 200]:

(2)(’“)(1)&1()3(@, bktls---sbpiClyee O | X1, ., Tn)
= bli}r{)lo(k)@%é(a,b,ka,...,bn;cl,...,cn | ;21 .., ).

A g-analogue of [1, p. 200]:

(1)(k)(b(An]%(a’ bla"' 7bTL;Cv Ck4+2,...,Cn | q;T1,y .- ,QTn)
= lim (k)@(n)(abl...b'cckl...c | ¢ x1, ..., 2p).
Clop1—300 AD\Y Y1, s Uny & G415 s bn 3 ’ s n

A g-analogue of [1, p. 200]:

(1)(k)<l>](3n]%(a,ak+2,...,an,bl,...,bn;c | g1, .., Tp)
= lirgoo (k)q)](;]%(a,akﬂ,...,an,bl,...,bn;c | g1, .. Tp).
k+1

A g-analogue of [1, p. 200]:

(2)(k)q)](3n]%(ak+la---7an7b17"'7bn;c | Q;l'b'"vxn)
= lim (k)q)](gn[))(a,ak+1,...,an,bl,...,bn;c | g1, .., 2p).

a—r 00
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5. Conclusion

As Karlsson pointed out, only symmetric functions give nice, short formulas.
In his opinion, these functions are the best ones. In forthcoming papers,
we shall follow similar paths for other functions. We have shown that our
g-real numbers, in particular the third one, are useful to find convergence
regions for g-hypergeometric functions.

6. Discussion

We note that in [7, (7.3)], we found a g¢-integral transformation formula
between two intermediate g-Lauricella functions. Karlsson’s intermediate
Lauricella functions are not well known. More famous are the so-called
Srivastava—Daoust functions. These latter functions are, however, too gen-
eral, since their convergence regions are not easy to compute.
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