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Cobalancing hybrid numbers

Abstract. Hybrid numbers are generalization of complex, hyperbolic and
dual numbers. In this paper, we define and study hybrid numbers with
cobalancing and Lucas-cobalancing coefficients. We derive some fundamen-
tal identities for these numbers, among others the Binet formulas and the
general bilinear index-reduction formulas which imply the Catalan, Cassini,
Vajda, d’Ocagne and Halton identities. Moreover, the generating functions
for cobalancing and Lucas-cobalancing hybrid numbers are presented.

1. Introduction. A positive integer n is a balancing number if it is the
solution of the Diophantine equation

(1) 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some positive integer r. Here r is called the balancer corresponding to
the balancing number n. The sequence of balancing numbers, denoted by
{Bn}, was introduced by Behera and Panda in [1]. It is well known that n
is a balancing number if and only if n2 is a triangular number, i.e. 8n2 + 1
is a perfect square, see [1].
In [6], Panda introduced the sequence of Lucas-balancing numbers, de-
noted by {Cn} and defined as follows: if Bn is a balancing number, the
number Cn for which (Cn)

2 = 8B2
n + 1 is called a Lucas-balancing number.

∗corresponding author
2010 Mathematics Subject Classification. 11B37, 11B39, 11D04.
Key words and phrases. Cobalancing numbers, Diophantine equation, hybrid numbers,

Binet formula.



88 M. Rubajczyk and A. Szynal-Liana

Cobalancing numbers were defined and introduced in [7] by modification
of formula (1). The authors called a positive integer n a cobalancing number
with cobalancer r if

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r).

Let bn denote the nth cobalancing number. The nth Lucas-cobalancing
number cn is defined with (cn)2 = 8b2n + 8bn + 1, see [4, 5].
The balancing, Lucas-balancing, cobalancing and Lucas-cobalancing
numbers fulfill the following recurrence relations

Bn = 6Bn−1 −Bn−2 for n ≥ 2, with B0 = 0, B1 = 1,

Cn = 6Cn−1 − Cn−2 for n ≥ 2, with C0 = 1, C1 = 3,

bn = 6bn−1 − bn−2 + 2 for n ≥ 2, with b0 = 0, b1 = 0,(2)

cn = 6cn−1 − cn−2 for n ≥ 2, with c0 = −1, c1 = 1.(3)

Note that cobalancing and Lucas-cobalancing numbers were originally de-
fined for n ≥ 1. Defining b0 = 0 and c0 = −1, we obtain the same, correctly
defined sequences.
The Binet type formulas for the above-mentioned sequences have the
following forms

Bn =
αn − βn

α− β
,

Cn =
αn + βn

2
,

bn =
αn− 1

2 − βn− 1
2

α− β
− 1

2
,(4)

cn =
αn− 1

2 + βn− 1
2

2
,(5)

for n ≥ 0, where

(6) α = 3 + 2
√
2, β = 3− 2

√
2, α

1
2 = 1 +

√
2, β

1
2 = 1−

√
2.

Note that additionally defined b0 and c0 satisfy (4)–(5).
Table 1 includes initial terms of the balancing, Lucas-balancing, cobal-
ancing and Lucas-cobalancing numbers for 0 ≤ n ≤ 7.

n 0 1 2 3 4 5 6 7
Bn 0 1 6 35 204 1189 6930 40391
Cn 1 3 17 99 577 3363 19601 114243
bn 0 0 2 14 84 492 2870 16730
cn −1 1 7 41 239 1393 8119 47321

Table 1. The balancing type numbers.
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In [3], Özdemir introduced a new non-commutative number system called
hybrid numbers. The set of hybrid numbers, denoted by K, is defined by

K = {z = a+ bi+ cε+ dh : a, b, c, d ∈ R},

where

(7) i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε+ i.

Two hybrid numbers z1 = a1 + b1i+ c1ε+ d1h, z2 = a2 + b2i+ c2ε+ d2h
are equal if and only if a1 = a2, b1 = b2, c1 = c2 and d1 = d2. The sum
and subtraction of two hybrid numbers are defined by z1±z2 = (a1±a2)+
(b1±b2)i+(c1±c2)ε+(d1±d2)h. The addition operation is commutative and
associative, zero is the null element. With respect to the addition operation,
the inverse element of z = a+ bi+ cε+dh is −z = −a− bi− cε−dh. Hence
(K,+) is an Abelian group.
Using (7), we get the multiplication Table 2.

· i ε h
i −1 1− h ε+ i
ε 1 + h 0 −ε
h −(ε+ i) ε 1

Table 2. The hybrid number multiplication.

In the literature, we can find many papers in which hybrid numbers with
coefficients being consecutive terms of known sequences are investigated,
see for example [2, 9, 10].
The balancing and Lucas-balancing hybrid numbers were introduced in
[2] as follows. For a nonnegative integer n the nth balancing hybrid number
BHn is defined as

BHn = Bn +Bn+1i+Bn+2ε+Bn+3h,

where Bn denotes the nth balancing number. The nth Lucas-balancing
hybrid number CHn was defined as

CHn = Cn + Cn+1i+ Cn+2ε+ Cn+3h,

where Cn is nth Lucas-balancing number.
In this paper, we define and study cobalancing and Lucas-cobalancing
hybrid sequences.

2. Main results. Let n ≥ 0 be an integer. The nth cobalancing hybrid
number bHn and the nth Lucas-cobalancing hybrid number cHn are defined
as

(8) bHn = bn + bn+1i+ bn+2ε+ bn+3h
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and

(9) cHn = cn + cn+1i+ cn+2ε+ cn+3h,

respectively, where bn is the nth cobalancing number, cn is the nth Lucas-
cobalancing number and i, ε, h are hybrid units which satisfy (7).
Using (8), (9) and Table 1, we get

bH0 = 2ε+ 14h,

bH1 = 2i+ 14ε+ 84h,

cH0 = −1 + i+ 7ε+ 41h,

cH1 = 1 + 7i+ 41ε+ 239h.

Theorem 1. Let n ≥ 2 be an integer. Then

bHn = 6bHn−1 − bHn−2 + 2 (1 + i+ ε+ h) ,

where bH0 = 2ε+ 14h, bH1 = 2i+ 14ε+ 84h.

Proof. By formulas (8) and (2), we get

6bHn−1 − bHn−2

= 6 (bn−1 + bni+ bn+1ε+ bn+2h)− (bn−2 + bn−1i+ bnε+ bn+1h)

= (6bn−1 − bn−2) + (6bn − bn−1) i+ (6bn+1 − bn) ε+ (6bn+2 − bn+1)h

= (bn − 2) + (bn+1 − 2)i+ (bn+2 − 2)ε+ (bn+3 − 2)h

= bHn − (2 + 2i+ 2ε+ 2h) ,

which ends the proof. □

In the same way, using (9) and (3), one can easily prove the next theorem.

Theorem 2. Let n ≥ 2 be an integer. Then

cHn = 6cHn−1 − cHn−2,

where cH0 = −1 + i+ 7ε+ 41h, cH1 = 1 + 7i+ 41ε+ 239h.

Hence we get the Binet formulas for the cobalancing and Lucas-cobalan-
cing hybrid numbers.

Theorem 3. Let n ≥ 0 be an integer. Then

(10) bHn =
αn− 1

2

α− β
α̂− βn− 1

2

α− β
β̂ − 1

2
1̂,

where α, β are given by (6) and

(11) α̂ = 1+ αi+ α2ε+ α3h, β̂ = 1+ βi+ β2ε+ β3h, 1̂ = 1+ i+ ε+ h.
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Proof. Using (8) and (4), we have

bHn = bn + bn+1i+ bn+2ε+ bn+3h

=

(
αn− 1

2 − βn− 1
2

α− β
− 1

2

)
+

(
αn+1− 1

2 − βn+1− 1
2

α− β
− 1

2

)
i

+

(
αn+2− 1

2 − βn+2− 1
2

α− β
− 1

2

)
ε+

(
αn+3− 1

2 − βn+3− 1
2

α− β
− 1

2

)
h

=

(
αn− 1

2

α− β
− βn− 1

2

α− β
− 1

2

)
+

(
α · αn− 1

2

α− β
− β · βn− 1

2

α− β
− 1

2

)
i

+

(
α2 · αn− 1

2

α− β
− β2 · βn− 1

2

α− β
− 1

2

)
ε+

(
α3 · αn− 1

2

α− β
− β3 · βn− 1

2

α− β
− 1

2

)
h

=
αn− 1

2

α− β

(
1 + αi+ α2ε+ α3h

)
− βn− 1

2

α− β

(
1 + βi+ β2ε+ β3h

)
− 1

2
(1 + i+ ε+ h) ,

which ends the proof. □

Using (9) and (5), one can easily prove the next theorem.

Theorem 4. Let n ≥ 0 be an integer. Then

(12) cHn =
1

2
αn− 1

2 α̂+
1

2
βn− 1

2 β̂,

where α, β and α̂, β̂ are given by (6) and (11), respectively.

Note that

α+ β = 6,(13)

α− β = 4
√
2,(14)

αβ = 1.(15)

By simple calculations we obtain

α̂β̂ = 1− αβ + αβ(α+ β) + (αβ)3 + (α+ β + αβ(α+ β)(β − α))i

+ (α2 + β2 + αβ(α+ β)(β − α) + (αβ)2(α− β))ε

+ (α3 + β3 + αβ(α− β))h.

By formulas (13)–(15) we get

α2 + β2 = (α+ β)2 − 2αβ = 34,

α3 + β3 = (α+ β)3 − 3αβ(α+ β) = 198.
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Thus

(16) α̂β̂ = 7 + (6− 24
√
2)i+ (34− 20

√
2)ε+ (198 + 4

√
2)h.

In the same way we obtain

(17) β̂α̂ = 7 + (6 + 24
√
2)i+ (34 + 20

√
2)ε+ (198− 4

√
2)h

and

1̂α̂ = 117 + 82
√
2 + (100 + 70

√
2)i+ (32 + 22

√
2)ε+ (86 + 60

√
2)h,

α̂1̂ = 117 + 82
√
2 + (−92− 66

√
2)i+ (4 + 2

√
2)ε+ (114 + 80

√
2)h,

1̂β̂ = 117− 82
√
2 + (100− 70

√
2)i+ (32− 22

√
2)ε+ (86− 60

√
2)h,

β̂1̂ = 117− 82
√
2 + (−92 + 66

√
2)i+ (4− 2

√
2)ε+ (114− 80

√
2)h.

(18)

Theorem 5 (General bilinear index-reduction formula for cobalancing hy-
brid numbers). Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that
a+ b = c+ d. Then
bHa · bHb− bHc · bHd

=
αc− 1

2βd− 1
2 −αa− 1

2βb− 1
2

(α−β)2
α̂β̂+

βc− 1
2αd− 1

2 −βa− 1
2αb− 1

2

(α−β)2
β̂α̂

+
αc− 1

2 −αa− 1
2

2(α−β)
α̂1̂+

αd− 1
2 −αb− 1

2

2(α−β)
1̂α̂+

βa− 1
2 −βc− 1

2

2(α−β)
β̂1̂+

βb− 1
2 −βd− 1

2

2(α−β)
1̂β̂,

where α, β and α̂β̂, β̂α̂, 1̂α̂, α̂1̂, 1̂β̂, β̂1̂ are given by (6) and (16)–(18),
respectively.

Proof. By (10), we have

bHa · bHb − bHc · bHd

=

(
αa− 1

2

α− β
α̂− βa− 1

2

α− β
β̂ − 1

2
1̂

)
·

(
αb− 1

2

α− β
α̂− βb− 1

2

α− β
β̂ − 1

2
1̂

)

−

(
αc− 1

2

α− β
α̂− βc− 1

2

α− β
β̂ − 1

2
1̂

)
·

(
αd− 1

2

α− β
α̂− βd− 1

2

α− β
β̂ − 1

2
1̂

)

= −αa− 1
2βb− 1

2

(α− β)2
α̂β̂ − αa− 1

2

2(α− β)
α̂1̂− βa− 1

2αb− 1
2

(α− β)2
β̂α̂+

βa− 1
2

2(α− β)
β̂1̂

− αb− 1
2

2(α− β)
1̂α̂+

βb− 1
2

2(α− β)
1̂β̂ +

αc− 1
2βd− 1

2

(α− β)2
α̂β̂ +

αc− 1
2

2(α− β)
α̂1̂

+
βc− 1

2αd− 1
2

(α− β)2
β̂α̂− βc− 1

2

2(α− β)
β̂1̂+

αd− 1
2

2(α− β)
1̂α̂− βd− 1

2

2(α− β)
1̂β̂

and after calculations we get the result. □
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Using (12), we can prove the next theorem.

Theorem 6 (General bilinear index-reduction formula for Lucas-cobalanc-
ing hybrid numbers). Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that
a+ b = c+ d. Then

cHa · cHb − cHc · cHd

=

(
1

4
αa− 1

2βb− 1
2 − 1

4
αc− 1

2βd− 1
2

)
α̂β̂ +

(
1

4
βa− 1

2αb− 1
2 − 1

4
βc− 1

2αd− 1
2

)
β̂α̂,

where α, β and α̂β̂, β̂α̂ are given by (6) and (16)–(17), respectively.

For special values of a, b, c, d, by Theorems 5–6, we can obtain some
identities for cobalancing and Lucas-cobalancing hybrid numbers:

• d’Ocagne type identity – for a = n, b = m+ 1, c = n+ 1, d = m,
• Vajda type identity – for a = m+ r, b = n− r, c = m, d = n,
• first Halton type identity – for a = m+ r, b = n, c = r, d = m+ n,
• second Halton type identity – for a = n + k, b = n − k, c = n + s,
d = n− s,

• Catalan type identity – for a = n+ r, b = n− r, c = d = n,
• Cassini type identity – for a = n+ 1, b = n− 1, c = d = n.

At the end, we give the generating functions for cobalancing and Lucas-
cobalancing hybrid numbers.

Theorem 7. The generating function for cobalancing hybrid number se-
quence {bHn} is

g(t) =
2ε+ 14h+ (2i− 14h) t+ (2 + 2h) t2

(1− 6t+ t2)(1− t)
.

Proof. Assume that the generating function of the cobalancing hybrid num-
ber sequence {bHn} has the form g(t) =

∑∞
n=0 bHnt

n. Then

g(t) = bH0 + bH1t+ bH2t
2 + · · · .

Hence we get

−6t · g(t) = −6bH0t− 6bH1t
2 − 6bH2t

3 − · · ·
t2 · g(t) = bH0t

2 + bH1t
3 + bH2t

4 + · · · .

By adding the above three equalities, we get

g(t)(1− 6t+ t2) = bH0 + (bH1 − 6bH0) t+ (bH2 − 6bH1 + bH0) t
2

+ (bH3 − 6bH2 + bH1) t
3 + · · · .
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As we know, t2+ t3+ · · · = t2

1−t , so adding this equality multiplied by −2 · 1̂
to the above, we obtain

g(t)(1− 6t+ t2)− 2t21̂

1− t
= bH0 + (bH1 − 6bH0) t

+
(
bH2 − 6bH1 + bH0 − 21̂

)
t2 +

(
bH3 − 6bH2 + bH1 − 21̂

)
t3 + · · ·

and we have

g(t) =
[bH0 + (bH1 − 6bH0) t] (1− t) + 2t21̂

(1− 6t+ t2)(1− t)
,

since bHn = 6bHn−1−bHn−2+2 (1 + i+ ε+ h) = 6bHn−1−bHn−2+21̂ (see
Theorem 1) and the coefficients of tn for n ≥ 2 are equal to zero. Moreover,
by simple calculations we have

g(t) =
bH0 + (bH1 − 7bH0) t+

(
21̂− bH1 + 6bH0

)
t2

(1− 6t+ t2)(1− t)

and
bH1 − 7bH0 = 2i− 14h, 21̂− bH1 + 6bH0 = 2 + 2h.

□

In the same way we can prove the next result.

Theorem 8. The generating function for Lucas-cobalancing hybrid number
sequence {cHn} is

G(t) =
−1 + i+ 7ε+ 41h+ (7 + i− ε− 7h) t

1− 6t+ t2
.

Concluding Remarks. In [8], the authors showed that cobalancing num-
bers are very closely related to the Pell sequence and the Lucas-cobalancing
numbers – to the associated Pell sequence. The hybrid Pell numbers were
introduced and studied in [10]. Using some relationships between cobalanc-
ing and Pell numbers, one can look for relationships between cobalancing
and Pell hybrid numbers.
In [4], Özkoç generalized the cobalancing and Lucas-cobalancing numbers
in the following way. Let bkn denote the nth k-cobalancing number and ckn
denote the nth k-Lucas cobalancing number which are the numbers defined
by

bkn = 6kbkn−1 − bkn−2 + 2 for n ≥ 2, with bk0 = 0, bk1 = 0,

ckn = 6kckn−1 − ckn−2 for n ≥ 2, with ck0 = 6k − 7, ck1 = 1

for some integer k ≥ 1. Similarly to the previous considerations, we have
defined additionally bk0 = 0 and ck0 = 6k − 7. For k = 1 we obtain classical
cobalancing numbers and Lucas-cobalancing numbers. Using these general-
izations, we can define generalizations of cobalancing and Lucas-cobalancing
hybrid numbers.
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The results presented in this paper have the potential to motivate further
researchers of the subject of generalizations of cobalancing hybrid numbers
and links of cobalancing hybrid numbers with Pell hybrid numbers.
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