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A general approach to conditional
strong laws of large numbers

Abstract. A general tool to prove conditional strong laws of larger number is
considered. It is shown that a conditional Kolmogorov type inequality implies
a conditional Hájek–Rényi type inequality and this implies a strong law of
large numbers. Both probability and moment inequalities are considered.
Some applications are offered in the last section.

1. Introduction. In this paper, we study conditional strong laws of large
numbers for arbitrary random variables. So, let X1, X2, . . . be a sequence
of random variables defined on the probability space (Ω,A, P ). The partial
sums of random variables are denoted as Sn =

∑n
i=1Xi for n ≥ 1 and

S0 = 0.
The classic strong law of large numbers which is due to Kolmogorov as-
serts that, if X1, X2, . . . are independent, identically distributed random
variables with finite mean µ, then the arithmetic mean converges almost
surely to µ. An elementary approach has been provided by Etemadi [1],
who established the strong law of large numbers under the assumption of
pairwise independence (without requiring mutual independence). For sev-
eral decades, numerous findings, modifications and applications concerning
the strong law of large numbers have been studied.
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In [2], Fazekas and Klesov presented a general approach to establish the
strong law of large numbers for sequences of random variables. Significantly,
their method does not impose any restriction on the underlying dependence
structure of random variables, but it needs a Kolmogorov type inequality.
Later, the approach of [2] was applied and extended by several authors, see
e.g. [6]. The aim of our paper is to obtain the conditional version of the
results of Fazekas and Klesov [2]. In our proofs we use the ideas given in [2].
In the last two decades several papers were devoted to conditional versions
of well-known theorems of probability theory. In [3], Majerek, Nowak and
Zięba studied the conditional strong law of large numbers for F-independent
random variables, where F is a σ-subalgebra of A. Their main results were
obtained via conditional Kolmogorov’s inequality. Prakasa Rao [4] besides
conditional independence, studied also conditional mixing and conditional
association.
In this paper, we shall show that a conditional Kolmogorov type inequal-
ity implies a conditional Hájek–Rényi type inequality and this implies a
strong law of large numbers. This approach can be used both for condi-
tional probabilities and for conditional expectations. In the last section of
this paper, we present several applications of the main result. Using our
approach, we offer alternative proofs to the following theorems: the con-
ditional strong law of large numbers for F-independent random variables
(Theorem 3.5 in [3]), a general version of the conditional strong law of large
numbers (Theorem 6 in [4]) and strong law for conditionally negatively as-
sociated random variables (Theorem 3.1 (b) in [5]).

2. Conditional strong law of large numbers via the Hájek–Rényi
inequality for expectations. We show that the conditional Kolmogorov
inequality implies the conditional Hájek–Rényi inequality and it implies the
strong law of large numbers without assuming further weak dependence
conditions.

Theorem 2.1. Let X1, X2, . . . , Xn be random variables and Sk = X1 +
· · ·+Xk. Let F be a σ-subalgebra, α1, . . . , αn be nonnegative F-measurable
random variables and r > 0 be a real number. Assume that the general
conditional Kolmogorov’s type inequality is true, that is

(2.1) E

([
max
1≤l≤m

|Sl|
]r

|F
)

≤
m∑
l=1

αl for all 1 ≤ m ≤ n.

Then the conditional Hájek–Rényi inequality is true, that is

(2.2) E

([
max
1≤l≤n

∣∣∣∣Sl

βl

∣∣∣∣]r |F) ≤ 4

n∑
l=1

αl

βr
l

for F-measurable random variables β1 ≤ β2 ≤ . . . ≤ βn with β1 ≥ β0, where
β0 is a positive constant.
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Proof. We can assume that β1 ≥ 1 during the proof. Let c = 2
1
r . Let

Ai = {k : ci ≤ βk < ci+1}, i = 0, 1, 2, . . .. Then Ai is F-measurable, because
βk is F-measurable. Ai is the set of subscripts k for which ci ≤ βk < ci+1.
Let i(n) be the index of the last nonempty Ai. Then i(n) is an F-measurable
random variable (possibly having value infinity). Let k(i) be the maximal
index in Ai. More precisely, k(i) = max{k : k ∈ Ai}, if Ai is nonempty, but
k(i) = k(i− 1) if Ai is empty (k(−1) = 0 by definition). Let

δl =

k(l)∑
j=k(l−1)+1

αj be the sum of α’s in Al, l = 0, 1, 2, . . . .

Then k(i) and δl are F-measurable, k(i) ≤ n. Using (2.1), we obtain

E

([
max
1≤l≤n

|Sl|
βl

]r
|F
)

≤
i(n)∑
i=0

E

([
max
l∈Ai

|Sl|
βl

]r
|F
)

≤
i(n)∑
i=0

c−irE

([
max
l∈Ai

|Sl|
]r

|F
)

≤
i(n)∑
i=0

c−irE

([
max
k≤k(i)

|Sk|
]r

|F
)

≤
i(n)∑
i=0

c−ir

k(i)∑
k=1

αk =

i(n)∑
i=0

c−ir
i∑

l=0

δl =

i(n)∑
l=0

δl

i(n)∑
i=l

c−ir

≤
i(n)∑
l=0

δl

∞∑
i=l

c−ir =
1

1− c−r

i(n)∑
l=0

c−lrδl

=
1

1− c−r

i(n)∑
l=0

c−lr

k(l)∑
k=k(l−1)+1

αk

≤ 1

1− c−r

i(n)∑
l=0

c−lr

k(l)∑
k=k(l−1)+1

αk
clr+r

βr
k

=
cr

1− c−r

i(n)∑
l=0

k(l)∑
k=k(l−1)+1

αk

βr
k

= 4
n∑

k=1

αk

βr
k

.

During the proof we applied the fact that in Ai we have 1 < cl+1

βk
. We also

mention that we applied (2.1) for random number of terms, i.e., instead of
m we applied it for k(i). One can show that (2.1) is true for this relation,
as k(i) is F-measurable and k(i) ≤ n. □

Theorem 2.2. Let X1, X2, . . . be random variables, Sn = X1 + · · · + Xn

for any n. Let b0 ≤ b1 ≤ b2 ≤ . . . be F-measurable random variables with
bn −→ ∞ a.s., where b0 is a positive constant. Let α1, α2, . . . be nonnegative
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F-measurable random variables. Let r > 0 be a fixed number. Assume that
for any n ≥ 1

(2.3) E

([
max
1≤l≤n

|Sl|
]r

|F
)

≤
n∑

l=1

αl.

If
∑∞

l=1
αl
brl

< ∞ a.s., then

(2.4) lim
n−→∞

Sn

bn
= 0 a.s.

Proof. We can assume that αn > 0 for all n a.s. To see it take a non-
random α′

n > 0, for any n and
∑

n α
′
l < ∞. Then instead of αn we can

consider max{αn, α
′
n}. Assume that αn ≥ α′

n > 0 and α′
n is non-random

for any n. Let

vn =

∞∑
k=n

αk

brk
, βn = max

1≤k≤n
bkv

1
2r
k .

Then the sequence βn is increasing, β1 > β0 > 0 where β0 is non-random.
Because of the assumption

∑∞
l=1

αl
brl

< ∞ a.s., we have

0 < vn < ∞ for all n a.s., vn −→ 0 a.s.

and vn is a decreasing sequence. Then, using the Abel–Dini theorem,
∞∑
n=1

αn

brnv
1
2
n

< ∞ a.s.

Therefore we have 0 < β0 ≤ β1 ≤ β2 ≤ . . . , β0 is non-random,
∞∑
k=1

αk

βr
k

< ∞, lim
k−→∞

βk
bk

= 0 a.s.

Then our previous theorem implies

E

(
max
1≤l≤n

∣∣∣∣Sl

βl

∣∣∣∣r |F) ≤ 4
n∑

l=1

αl

βr
l

for all n.

So, by the monotone convergence theorem,

E

(
sup

1≤l≤∞

∣∣∣∣Sl

βl

∣∣∣∣r |F
)

≤ 4

∞∑
l=1

αl

βr
l

< ∞ a.s.

So

sup
1≤l≤∞

∣∣∣∣Sl

βl

∣∣∣∣r < ∞ a.s.

Therefore

0 ≤
∣∣∣∣Sl

bl

∣∣∣∣ = ∣∣∣∣Sl

βl

∣∣∣∣ βlbl ≤

(
sup

1≤l≤∞

∣∣∣∣Sl

βl

∣∣∣∣
)

βl
bl

−→ 0 a.s. as l −→ ∞. □
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3. Conditional strong law of large numbers via the Hájek–Rényi
inequality for probabilities. Here we offer the same approach as in the
previous section, but we use conditional probabilities instead of conditional
expectations.

Theorem 3.1. Let X1, X2, . . . , Xn be random variables, Sk = X1+· · ·+Xk.
Let F be a σ-subalgebra. Let r be a positive real number. Let β1 ≤ β2 ≤
· · · ≤ βn be F-measurable, α1, . . . , αn be nonnegative F-measurable random
variables. Assume that β1 ≥ β0 > 0, where β0 is non-random. If

(3.1) P

(
max
1≤l≤m

|Sl| ≥ ε|F
)

≤ 1

εr

m∑
l=1

αl for all 1 ≤ m ≤ n

and for all ε > 0, then

(3.2) P

(
max
1≤l≤n

∣∣∣∣Sl

βl

∣∣∣∣ ≥ ε|F
)

≤ 4

εr

n∑
k=1

αk

βr
k

for all ε > 0.

Proof. Using the same notation as in the proof of Theorem 2.1, we have

P

(
max
1≤l≤n

|Sl|
βl

≥ ε|F
)

≤
i(n)∑
i=0

P

(
max
l∈Ai

|Sl|
βl

≥ ε|F
)

≤
i(n)∑
i=0

P

(
max
l∈Ai

|Sl|
ci

≥ ε|F
)

≤
i(n)∑
i=0

P

(
max
k≤k(i)

|Sk|
ci

≥ ε|F
)

≤
i(n)∑
i=0

(εci)−r

k(i)∑
k=1

αk =

i(n)∑
i=0

(εci)−r
i∑

l=0

δl

=

i(n)∑
l=0

δl

i(n)∑
i=l

(εci)−r ≤
i(n)∑
l=0

δl

∞∑
i=l

(εci)−r

= ε−r 1

1− c−r

i(n)∑
l=0

c−lrδl = ε−r 1

1− c−r

i(n)∑
l=0

c−lr

k(l)∑
k=k(l−1)+1

αk

≤ ε−r 1

1− c−r

i(n)∑
l=0

c−lr

k(l)∑
k=k(l−1)+1

αk
clr+r

βr
k

= ε−r cr

1− c−r

i(n)∑
l=0

k(l)∑
k=k(l−1)+1

αk

βr
k

= 4ε−r
n∑

k=1

αk

βr
k

. □
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Theorem 3.2. Let X1, X2, . . . , Xn be random variables, Sk = X1+· · ·+Xk.
Let F be a σ-subalgebra. Let b0 ≤ b1 ≤ b2 . . . be F-measurable random
variables with bn −→ ∞ a.s., where b0 is a positive constant. Let α1, α2, . . .
be nonnegative F-measurable random variables. Let r > 0 be a fixed number.
Assume that for any n ≥ 1

(3.3) P

(
max
1≤l≤n

|Sl| ≥ ε|F
)

≤ 1

εr

n∑
l=1

αl for all ε > 0.

If
∑∞

l=1
αl
brl

< ∞ a.s., then

(3.4) lim
n−→∞

Sn

bn
= 0 a.s.

Proof. Assume that αn ≥ α′
n > 0 where α′

n is non-random for any n. Let

vn =
∞∑
k=n

αk

βr
k

, βn = max
1≤k≤n

bkv
1
2r
k .

Then, because of the assumption
∑∞

l=1
αl
brl

< ∞ a.s., we have

0 < vn < ∞ for all n ≥ 1 a.s. and vn −→ 0 a.s.

Moreover, the Abel–Dini’s theorem implies
∞∑
n=1

αn

brnv
1
2
n

< ∞ a.s.

Therefore β1, β2, . . . is an increasing sequence, β1 ≥ β0 > 0, where β0 is
non-random,

∞∑
k=1

αk

βr
k

< ∞, lim
k−→∞

βk
bk

= 0 a.s.

Then our previous theorem implies

P

(
max
1≤l≤n

|Sl|
βl

≥ ε|F
)

≤ 4

εr

n∑
l=1

αl

βr
l

for all n and ε > 0.

So, by the monotone convergence theorem,

P

(
sup

1≤l<∞

|Sl|
βl

≥ ε|F

)
≤ 4

εr

∞∑
l=1

αl

βr
l

.

Let ε −→ ∞, we have

sup
1≤l<∞

|Sl|
βl

< ∞ a.s.

Now

0 ≤
∣∣∣∣Sl

bl

∣∣∣∣ = ∣∣∣∣Sl

βl

∣∣∣∣ βlbl ≤

(
sup

1≤l<∞

|Sl|
βl

)
βl
bl

−→ 0 a.s., as l −→ ∞
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because βl
bl

−→ 0 a.s. Therefore,

lim
n−→∞

Sn

bn
= 0 a.s. □

4. Applications. First we consider conditional Kolmogorov’s strong law
of large numbers for F-independent random variables. In [3], conditionally
independent random variables were studied and Kolmogorov type strong
laws of large numbers were obtained. Now, we prove Theorem 3.5 of [3]
using our general approach. Let σ2

F (X) = E
{
(X − E(X|F))2 |F

}
denote

the conditional variance of X.

Theorem 4.1. Let {Xn, n ≥ 1} be a sequence of F-independent random
variables such that

∑∞
k=1

σ2
F (Xk)

k2
< ∞ a.s. Let Sn = X1 + · · · + Xn, n =

1, 2, . . . . Then

(4.1) lim
n−→∞

Sn − E(Sn|F)

n
= 0 a.s.

Proof. For F-independent random variables the Kolmogorov inequality
presented in [3] is

(4.2) P

(
max
1≤k≤n

|Sk − E(Sk|F)| ≥ ε|F
)

≤
n∑

k=1

1

ε2
σ2
F (Xk).

Then (4.2) is the condition (3.1) for r = 2. As
∑∞

k=1
σ2
F (Xk)

k2
< ∞ a.s., we

can apply Theorem 3.2. Therefore

lim
n−→∞

Sn − E(Sn|F)

n
= 0 a.s. □

Remark 4.2. By using Theorem 3.1, we can obtain the Hájek–Rényi type
inequality for conditionally independent random variables as

P

(
max
1≤k≤n

∣∣∣∣Sk − E(Sk|F)

k

∣∣∣∣ ≥ ε|F
)

≤ 4

ε2

n∑
k=1

σ2
F (Xk)

k2
.

Prakasa Rao in [4] obtained a general version of the conditional strong
law of large numbers proved in [3]. We apply our Theorem 3.2 to prove the
following theorem (Theorem 6 in [4]).

Theorem 4.3. If {Xn, n ≥ 1} is a sequence of F-independent random
variables such that

(4.3)
∞∑
n=1

E
(
|Xn − E(Xn|F)|2r |F

)
nr+1

< ∞ a.s.,

for some r ≥ 1, then

(4.4)
Sn − E(Sn|F)

n
−→ 0 a.s. as n −→ ∞.
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Proof. By the Kolmogorov inequality in Theorem 4 of [4] for r ≥ 1, and
by inequality (5.1) of [4]

P

(
max
1≤k≤n

|Sk − E(Sk|F)| ≥ ε|F
)

≤ 1

ε2r
E (|Sn − E(Sn|F)|r |F)

≤ 1

ε2r
nr−1

n∑
k=1

E
(
|Xk − E(Xk|F)|2r |F

)
=

1

ε2r
Λn.

We want to represent Λn as Λn = α1 + · · ·+ αn. Let

Ak = E
(
|Xk − E(Xk|F)|2r |F

)
,

then

αn = Λn − Λn−1 = nr−1
n∑

k=1

Ak − (n− 1)r−1
n−1∑
k=1

Ak

= nr−1An + [nr−1 − (n− 1)r−1]

n−1∑
k=1

Ak.

We have to show, that
∑∞

n=1
αn
n2r < ∞.

∞∑
n=1

αn

n2r
=

∞∑
n=1

nr−1

n2r
An +

∞∑
n=1

nr−1 − (n− 1)r−1

n2r

n−1∑
k=1

Ak.

Changing the order of the summation in the second term, we obtain
∞∑
k=1

Ak

∞∑
n=k+1

nr−1 − (n− 1)r−1

n2r
≤

∞∑
k=1

Ak

∞∑
n=k+1

Cnr−2

n2r

= C
∞∑
k=1

Ak

∞∑
n=k+1

n−r−2

≤ C
∞∑
k=1

Ak

∫ ∞

k
x−r−2dx

≤ C
∞∑
k=1

Akk
−r−1,

where we used the mean value theorem and approximation with integral.
So

∞∑
n=1

αn

n2r
≤ C

∞∑
n=1

An

nr+1
< ∞

using condition (4.3). Hence

P

(
max
1≤k≤n

|Sk − E(Sk|F)| ≥ ε|F
)

≤ 1

ε2r
C

n∑
k=1

αk,
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where
∑∞

n=1
αn
n2r < ∞. So our Theorem 3.2 implies

Sn − E(Sn|F)

n
−→ 0 a.s. as n −→ ∞. □

Now we show that our approach gives a quick proof of Theorem 3.1 (b)
of [5].

Theorem 4.4. Let bn be an increasing sequence of positive real numbers,
bn −→ ∞. Let X1, X2, . . . be conditionally centered F-negatively associated
random variables, 1 ≤ r ≤ 2. Assume that

∑∞
n=1

E(|Xn|r|F)
brn

< ∞ a.s. Then

(4.5)
1

bn

n∑
k=1

Xk −→ 0 a.s. as n −→ ∞.

Proof. For our random variables the following Kolmogorov-type inequality
is true

E

(
max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
r

|F

)
≤ C

k∑
i=1

E (|Xi|r |F) a.s.,

see Lemma 2.1 of [5]. Then our Theorem 2.2 gives the result without any
further calculation. □
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