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Generalized Kaplan classes and their applications

Abstract. Ali and Vasudevarao considered the integral operator Ir,s(z) :=∫ z

0
(f ′(t))r(g′(t))sdt and determined all values of r and s for which the op-

erator (f, g) 7→ Ir,s maps a specified subclass of Hornich space into another
specified subclass of Hornich space. Thus, as it was stated by Kumar and
Sahoo, Ali and Vasudevarao studied the range of r and s that preserves prop-
erties of these specified classes. Based on the Kaplan classes, we introduce the
product classes Ka,b for arbitrary finite sequences a and b and consider op-
erations similar to Hornich operations. To this end we improve Sheil-Small’s
factorization theorem. Moreover, using elaborated techniques, we simplify
proofs and solve the generalized problems considered by Causey and Reade,
Goodman, Kim and Merkes.

1. Introduction. In this section, we define several symbols and prove
some auxiliary lemmas.

1.1. Basic definitions. We consider the following subclasses of the class
of all analytic functions in the unit disc D := {z ∈ C : |z| < 1}:

• A is the class of all functions f normalized by f(0) = f ′(0)− 1 = 0,
• H is the subclass of A of all functions f that are locally univalent,
i.e. f ′ ̸= 0 in D,

• S is the class of all univalent functions belonging to A,
• K is the class of functions in S that map D onto a convex set,
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• S∗ is the class of functions in S that map D onto a starlike domain
with respect to 0,

• C is the class of functions in S that are close-to-convex,
• Hd is the class of all analytic functions f normalized by f(0) = 1
and such that f ̸= 0 in D.

The Kaplan classes were one of the means used as a universal tool for
establishing many important subclasses of S (see [18, p. 47]). Since then,
many authors have studied properties of Kaplan classes, in particular:

• Sheil-Small established a theorem on factorization of the Kaplan
classes (see [20, p. 246]),

• Kim et al. posed many problems regarding the properties of in-
tegral operators (see [11]), while Lamprecht in collaboration with
Ruscheweyh (see [14]), using Kaplan classes, solved one of the open
problems stated by Kim,

• Ruscheweyh and Sumyk studied classes K(α, β), among others, in
the context of their relations with classes T (α, β) (see [19]).

Based on the results of Ruscheweyh (see [18]), Sheil-Small (see [20]), Lam-
precht (see [14]), Ruscheweyh and Sumyk (see [19]), we extend the prop-
erties of the Kaplan classes, among others, in relation to the factorization
problem of these classes (see Section 2). Then we introduce the generalized
Kaplan classes Ka,b for arbitrary finite sequences a and b. The generalized
Kaplan classes Ka,b are based on Kaplan classes and operations similar to
Hornich operations. We show that the generalized Kaplan classes Ka,b pre-
serve membership to a given Kaplan class K(α, β). It corresponds to the
idea proposed by Ali and Vasudevarao [1] (see also [13]).
In Section 3 we apply these results to simplify proofs and solve the gen-
eralized problems of univalence of integral operators (see also [2, 3, 6, 12,
15, 16]).

1.2. Definition of the Kaplan classes. For α, β ≥ 0 the Kaplan class
K(α, β) is the set of all functions f ∈ Hd satisfying the condition

(1.1) −απ − 1

2
(α− β)(θ1 − θ2) ≤ arg f(reiθ2)− arg f(reiθ1)

for 0 < r < 1 and θ1 < θ2 < θ1 + 2π (see [18, pp. 32–33]).
Let us recall [18, p. 46] that

• f ∈ K if and only if f ′ ∈ K(0, 2),
• f ∈ C if and only if f ′ ∈ K(1, 3),
• f ∈ S∗ if and only if f/ Id ∈ K(0, 2),
where D ∋ z 7→ Id(z) := z.

1.3. Alternative definition of the Kaplan classes. Let us notice that
the condition (1.1) can be written in an equivalent way (see [20, p. 245]).
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Lemma 1.1. For every α, β ≥ 0 and function f ∈ Hd the following in-
equalities are equivalent:

−απ − α− β

2
(θ1 − θ2) ≤ arg f(reiθ2)− arg f(reiθ1) ;(1.2)

arg f(reiθ2)− arg f(reiθ1) ≤ βπ − α− β

2
(θ1 − θ2) ;(1.3)

−απ − α− β

2
(θ1 − θ2) ≤ arg f(reiθ2)− arg f(reiθ1)

≤ βπ − α− β

2
(θ1 − θ2)

(1.4)

for 0 < r < 1 and θ1 < θ2 < θ1 + 2π.

Proof. It is enough to prove that inequalities (1.2) and (1.3) are equivalent.
Fix r ∈ (0; 1) and θ1 < θ2 < θ1 + 2π. Using (1.2) with θ1 and θ2 replaced
by θ2 and θ1 + 2π, respectively, we get

−απ − 1

2
(α− β)(θ2 − θ1 − 2π) ≤ arg f(reiθ1+2π)− arg f(reiθ2) .

Hence

−απ + π(α− β)− 1

2
(α− β)(θ2 − θ1) ≤ arg f(reiθ1)− arg f(reiθ2)

and consequently

βπ − 1

2
(α− β)(θ1 − θ2) ≥ arg f(reiθ2)− arg f(reiθ1)

for all r ∈ (0; 1) and θ1 < θ2 < θ1 + 2π, which ends the proof. □

Inequalities (1.2), (1.3), (1.4) give us a better view on relations between
Kaplan classes and possible operations, which can be defined using these
classes. The properties listed below were described in [20], but in this work
we complement and extend them. First we will need the following lemma.

Lemma 1.2. For all α1, α2, β1, β2 ≥ 0 and t ∈ R\{0} the following condi-
tions hold:

f ∈K(α1,β1) and g ∈K(α2,β2)⇒ fg ∈K(α1+α2,β1+β2) ,(1.5)

f ∈K(α1,β1)⇔f t ∈K

(
|t|+ t

2
α1+

|t|− t

2
β1,

|t|+ t

2
β1+

|t|− t

2
α1

)
,(1.6)

f ∈K(α1,β1)⇒ f0 ∈K(0,0) .(1.7)

Proof. The implication (1.5) was proved in [14]. Now we prove the equiv-
alence (1.6). Fix t > 0. Multiplying the inequality (1.1) by t, we get

−tα1π − t
1

2
(α1 − β1)(θ1 − θ2) ≤ t arg f(reiθ2)− t arg f(reiθ1)
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and as a consequence

−tα1π − t
1

2
(α1 − β1)(θ1 − θ2) ≤ arg f t(reiθ2)− arg f t(reiθ1) .

Hence by (1.2) we have

(1.8) f ∈ K(α1, β1) ⇐⇒ f t ∈ K(tα1, tβ1) .

Fix t < 0. Multiplying the inequality (1.1) by t, we obtain

−tα1π − t
1

2
(α1 − β1)(θ1 − θ2) ≥ t arg f(reiθ2)− t arg f(reiθ1)

and so

|t|α1π − 1

2
(|t|β1 − |t|α1)(θ1 − θ2) ≥ arg f t(reiθ2)− arg f t(reiθ1) .

Hence by (1.3) we get

(1.9) f ∈ K(α1, β1) ⇐⇒ f t ∈ K(|t|β1, |t|α1) .

From equivalences (1.8) and (1.9) we obtain the condition (1.6) for t ∈ R\{0}
and α1, β1 ≥ 0.
Assume that f ∈ K(α1, β1). Then by definition of the Kaplan classes,

f ̸= 0 in D. Therefore f0 ≡ 1 satisfies the condition (1.4) with α = β = 0,
which leads to f0 ∈ K(0, 0). □

1.4. Inclusions for Kaplan classes. Now we define and classify functions
corresponding to the appropriate Kaplan classes, which is necessary to study
univalence of integral operators.

Lemma 1.3. The function D ∋ z 7→ δ(z) := 1 − z satisfies the following
properties:

(1.10) δ ∈ K(1, 0)

and for 0 ≤ α < 1, 0 ≤ β,

(1.11) δ /∈ K(α, β) .

Proof. Let D ∋ z 7→ f(z) := z/(1 − z). Since f ∈ K, it follows that
f ′ ∈ K(0, 2). Since δ = (f ′)−1/2, we see by the equivalence (1.6) that
δ ∈ K(1, 0).
Now we prove (1.11). Using (1.3) with r, θ1 and θ2 replaced by N ∋ n 7→

r(n) := 1−1/(2n2), N ∋ n 7→ θ1(n) := 1/n and N ∋ n 7→ θ2(n) := 2π−1/n,
respectively, from the equality

eiθ2(n) = eiθ1(n)

we deduce that

arg
(
δ
(
r(n)eiθ2(n)

))
−arg

(
δ
(
r(n)eiθ1(n)

))
=−2arg

(
1−
(
1− 1

2n2

)
ei/n
)
.
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Since

Re

(
1−
(
1− 1

2n2

)
ei/n
)
= 1−

(
1− 1

2n2

)
cos

(
1

n

)
> 0

and

Im

(
1−
(
1− 1

2n2

)
ei/n
)
=−

(
1− 1

2n2

)
sin

(
1

n

)
,

we obtain

−2arg

(
1−
(
1− 1

2n2

)
ei/n
)
= 2arctan

( (
1− 1

2n2

)
sin
(
1
n

)
1−
(
1− 1

2n2

)
cos
(
1
n

)) .

Since Re(1−z)> 0 for z ∈D and

(1.12) lim
n→+∞

2arctan

( (
1− 1

2n2

)
sin
(
1
n

)
1−
(
1− 1

2n2

)
cos
(
1
n

))= π ,

we get
π= sup

{
δ(reiθ2)− δ(reiθ1) : θ1 < θ2 < θ1+2π

}
.

Now consider the right side of the inequality (1.3) with f :=δ. Fix α,β≥0.
Then

βπ− 1

2
(α−β)(θ1(n)−θ2(n)) = α

(
π− 1

n

)
+

β

n

and consequently

(1.13) lim
n→+∞

α

(
π− 1

n

)
+

β

n
= απ .

From conditions (1.12) and (1.13) we deduce that the inequality (1.3) does
not hold for f := δ, 0≤ α< 1 and β ≥ 0. □

Using the function δ, we can prove some relations between Kaplan classes.

Lemma 1.4. For all α1, α2, β1, β2 ≥ 0 the following equivalences hold:

α1 ≤ α2 ⇐⇒ K(α1, β1) ⊂ K(α2, β1) ,(1.14)

β1 ≤ β2 ⇐⇒ K(α1, β1) ⊂ K(α1, β2) .(1.15)

Proof. Let 0 ≤ α1 ≤ α2 and β1 ≥ 0. Since θ1 < θ2, from (1.3) we see that

arg f(reiθ2)−arg f(reiθ1) ≤ β1π−
α1 − β1

2
(θ1−θ2) ≤ β1π−

α2 − β1
2

(θ1−θ2) ,

from which

(1.16) α1 ≤ α2 ⇒ K(α1, β1) ⊂ K(α2, β1) .

Let 0 ≤ β1 ≤ β2 and α1 ≥ 0. Since θ1 < θ2, from (1.2) we deduce that

−α1π − α1 − β2
2

(θ1 − θ2) ≤ −α1π − α1 − β1
2

(θ1 − θ2)

≤ arg f(reiθ2)− arg f(reiθ1)
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and so

(1.17) β1 ≤ β2 ⇒ K(α1, β1) ⊂ K(α1, β2) .

Suppose that 0 ≤ α2 < α1 and β1, β2 ≥ 0. Then by (1.6), (1.11) and
(1.17) we get δα1 ∈ K(α1, β1) and δα1 /∈ K(α2, β1). This ends the proof of
the equivalence (1.14) in the direction (⇐).
Suppose that 0 ≤ β2 < β1 and α1, α2 ≥ 0. Then by equivalence (1.6),
(1.11) and (1.16), 1/δβ1 ∈ K(α1, β1) and 1/δβ1 /∈ K(α1, β2). This ends the
proof of equivalence (1.15) in the direction (⇐). □

As a matter of fact, Sheil-Small proved in [20, p. 245] the following im-
plication

α1 ≤ α2 and β1 ≤ β2 ⇒ K(α1, β1) ⊂ K(α2, β2)

for α1, α2, β1, β2 ≥ 0. From Lemma 1.4 we improve this result as follows.

Corollary 1.5. For all α1, α2, β1, β2 ≥ 0 the following equivalence holds

(1.18) α1 ≤ α2, β1 ≤ β2 ⇐⇒ K(α1, β1) ⊂ K(α2, β2) .

2. Main theorems. In this section we present several theorems about
preserving Kaplan classes.

2.1. Generalized Kaplan classes. Let R+
0 := [0;+∞) and Nn := N ∩

[1;n] for every n ∈ N.

Definition 2.1. For n ∈ N and a, b : Nn → R+
0 the class

(2.1) Ka,b = K(a1,...,an),(b1,...,bn) :=

{
n∏

k=1

fk : fk ∈ K(ak, bk) for k ∈ Nn

}
is said to be the generalized Kaplan class for sequences a and b.

Of course for every α, β ≥ 0 the equality K(α, β) = K(α),(β) holds, so the
Kaplan classes are the special case of the generalized Kaplan classes. Now
we define two inner operations on

DK :=
⋃
n∈N

⋃
a,b:Nn→R+

0

Ka,b ,

which are not inner for Kaplan classes. For m,n ∈ N, a, b : Nm → R+
0 ,

c, d : Nn → R+
0 and t ∈ R we define

(2.2) Ka,b ⊕Kc,d := {f · g : f ∈ Ka,b, g ∈ Kc,d}
and

(2.3) t⊙Ka,b := {f t : f ∈ Ka,b} .
Operations given by (2.2) and (2.3) are similar to the Hornich operations in
[8] (see also [14]). The difference is that in our paper ⊕ and ⊙ are operations
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on classes of functions, not on functions. Later in this subsection we study
the relationship between classes

K(α1, β1)⊕K(α2, β2)⊕ . . .⊕K(αn, βn)

and
K(α1 + α2 + . . .+ αn, β1 + β2 + . . .+ βn) .

Lemma 2.2. For all α1, α2, β1, β2 ≥ 0, if α1 ·β2 = α2 ·β1, then the following
equality holds

(2.4) K(α1, β1)⊕K(α2, β2) = K(α1 + α2, β1 + β2) .

Proof. Fix α1, α2, β1, β2 ≥ 0 such that α1 · β2 = α2 · β1. Assume that
f1 ∈ K(α1, β1) and f2 ∈ K(α2, β2). Therefore, directly by (1.5) we get

f1 · f2 ∈ K(α1 + α2, β1 + β2) ,

from which

K(α1, β1)⊕K(α2, β2) ⊂ K(α1 + α2, β1 + β2) .

Now assume that g ∈ K(α1 + α2, β1 + β2). The case α1 = α2 = β1 = β2 = 0
is trivial. If α1, α2, β1 or β2 is not equal to 0 then α1+α2 > 0 or β1+β2 > 0.
Hence without loss of generality we can assume that α1 + α2 > 0. Setting

f1 := g
α1

α1+α2

and
f2 := g

α2
α1+α2

we get

(2.5) f1 · f2 = g
α1

α1+α2 · g
α2

α1+α2 = g .

Using the assumption α1 · β2 = α2 · β1, we get

(2.6)
α1

α1 + α2
· (β1 + β2) =

α1β1 + α1β2
α1 + α2

=
α1β1 + α2β1
α1 + α2

= β1

and

(2.7)
α2

α1 + α2
· (β1 + β2) =

α2β1 + α2β2
α1 + α2

=
α1β2 + α2β2
α1 + α2

= β2 .

By (1.6), (1.8), (2.6) and (2.7), we get

f1 = g
α1

α1+α2 ∈ K

(
α1

α1 + α2
· (α1 + α2),

α1

α1 + α2
· (β1 + β2)

)
= K(α1, β1)

and

f2 = g
α2

α1+α2 ∈ K

(
α2

α1 + α2
· (α1 + α2),

α2

α1 + α2
· (β1 + β2)

)
= K(α2, β2) ,

from which

K(α1 + α2, β1 + β2) ⊂ K(α1, β1)⊕K(α2, β2) . □
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Lemma 2.2 leads to the following corollary.

Corollary 2.3. For all α1, α2, β1, β2 ≥ 0 the following equalities hold:

K(α1, 0)⊕K(α2, 0) = K(α1 + α2, 0) ,(2.8)

K(0, β1)⊕K(0, β2) = K(0, β1 + β2) ,(2.9)

K(α1, α1)⊕K(α2, α2) = K(α1 + α2, α1 + α2) .(2.10)

Using the operations ⊕ and ⊙, we can rephrase the factorization theorem
from [20, p. 246] in the following way.

Theorem A (Sheil-Small, 2002). For all α, β ≥ 0

K(α, β) = K(min(α, β),min(α, β))⊕ ((α− β)⊙K(1, 0)) .

Now we prove the following theorem, which is a generalization of Theo-
rem A.

Theorem 2.4. For all α1, α2, β1, β2 ≥ 0, if (β1 − α1)(β2 − α2) ≥ 0, then
the following equality holds

(2.11) K(α1, β1)⊕K(α2, β2) = K(α1 + α2, β1 + β2) .

Proof. Given α1, α2, β1, β2 ≥ 0 suppose that (β1−α1)(β2−α2) > 0. Hence
the expressions (β1 − α1) and (β2 − α2) have the same sign. Setting m1 :=
min(α1, β1), m2 := min(α2, β2), d1 = α1 − β1 and d2 = α2 − β2, we deduce
from Theorem A that the equality

K(α1, β1)⊕K(α2, β2)

= K(m1,m1)⊕ (d1 ⊙K(1, 0))⊕K(m2,m2)⊕ (d2 ⊙K(1, 0))

holds for α1, α2, β1, β2 ≥ 0. Since d1 and d2 have the same sign, we see by
Corollary 2.3 that

K(m1,m1)⊕ (d1 ⊙K(1, 0))⊕K(m2,m2)⊕ (d2 ⊙K(1, 0))

= K(m1 +m2,m1 +m2)⊕ ((d1 + d2)⊙K(1, 0)) .

Using Theorem A again, we get

K(m1 +m2,m1 +m2)⊕ ((d1 + d2)⊙K(1, 0)) = K(α1 + α2, β1 + β2) ,

and so
K(α1, β1)⊕K(α2, β2) = K(α1 + α2, β1 + β2) .

The case (β1 − α1)(β2 − α2) = 0 is obvious. □

The condition (β1 − α1)(β2 − α2) ≥ 0 is sufficient for the equality (2.11).
In the natural way the question arises: Does the equality (2.11) hold with-
out this condition? If the answer to that question was positive, then Kaplan
classes would be fully decomposable. In particular it means that any func-
tion with positive real part in D could be expressed as a square root of a
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quotient of derivatives of two convex functions from the class K. Neverthe-
less, we will show in Theorem 2.7 that operation ⊕ in some sense preserves
Kaplan classes, even for generalized Kaplan classes.
For n ∈ N and a, b : Nn → R+

0 we define

An :=

n∑
k=1

ak ,(2.12)

Bn :=

n∑
k=1

bk .(2.13)

From the implication (1.5) we directly obtain the following lemma.

Lemma 2.5. For n ∈ N and a, b : Nn → R+
0 the following inclusion holds

(2.14) Ka,b ⊂ K(An, Bn) .

The inclusion (2.14) is sharp in some sense, as stated in the following
lemma.

Lemma 2.6. For n ∈ N and a, b : Nn → R+
0 the following inclusions hold:

K(An, 0) ⊂ Ka,b ,(2.15)

K(0, Bn) ⊂ Ka,b .(2.16)

Proof. Suppose that n ∈ N, a, b : Nn → R+
0 and f ∈ K(An, 0). Set fk :=

fak/An for every k ∈ Nn. By (1.2), for all 0 < r < 1 and θ1 < θ2 < θ1 + 2π,
we obtain

−Anπ − 1

2
An(θ1 − θ2) ≤ arg f

(
reiθ2

)
− arg f

(
reiθ1

)
,

from which

−akπ − 1

2
ak(θ1 − θ2) ≤ arg f

ak
An

(
reiθ2

)
− arg f

ak
An

(
reiθ1

)
.

Hence for k ∈ Nn, we obtain

f
ak
An ∈ K(ak, 0) .

Therefore by (1.15) we get fak/An ∈ K(ak, bk). Since

f =

n∏
k=1

f
ak
An ,

f ∈ Ka,b, which leads to (2.15). The inclusion (2.16) can be proved analo-
gously. □

In the following theorem we show that operations ⊕ on classes K(ak, bk)
hidden in Ka,b preserve the class K(An, Bn).
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Theorem 2.7. For n ∈ N, a, b : Nn → R+
0 and α, β ≥ 0 the following

equivalence hold

(2.17) Ka,b ⊂ K(α, β) ⇐⇒ An ≤ α and Bn ≤ β .

Proof. Suppose that n ∈ N, a, b : Nn → R+
0 and α, β ≥ 0. The equivalence

(2.17) in the direction (⇐) follows from Corollary 1.5 and Lemma 2.5.
Now we prove equivalence (2.17) in the direction (⇒). Assume that

An > α or Bn > β. Setting

D ∋ z 7→ fk(z) :=
(1− z)ak

(1 + z)bk

for k ∈ Nn and

D ∋ z 7→ f(z) :=

n∏
k=1

fk(z) ,

we get fk ∈ K(ak, bk) for k ∈ Nn, f ∈ Ka,b and

f(z) =
(1− z)An

(1 + z)Bn
.

Using (1.3) with r, θ1 and θ2 replaced by N ∋ n 7→ r(n) := 1− 1/(2n2), N ∋
n 7→ θ1(n) := 1/n and N ∋ n 7→ θ2(n) := 2π − 1/n, respectively, we deduce
that if α < An, then for any β ≥ 0, f /∈ K(α, β). Using (1.3) with r, θ1 and
θ2 replaced by N ∋ n 7→ r(n) := 1 − 1/(2n2), N ∋ n 7→ θ1(n) := −π + 1/n
and N ∋ n 7→ θ2(n) := π−1/n, respectively, we deduce that if β < Bn, then
for any α ≥ 0, f /∈ K(α, β). Therefore f /∈ K(α, β). □

2.2. Connections with classes S and C. In reference to Definition 2.1,
we introduce the following subclasses of H.

Definition 2.8. For n ∈ N and a, b : Nn → R+
0 we define

(2.18) Ca,b = C(a1,...,an),(b1,...bn) := {f ∈ H : f ′ ∈ Ka,b} .
and

DC :=
⋃
n∈N

⋃
a,b:Nn→R+

0

Ca,b .

Similarly to (2.2) and (2.3), we consider two inner operations in DC for
all m,n ∈ N, a, b : Nm → R+

0 , c, d : Nn → R+
0 and t ∈ R, defined as follows:

(2.19) Ca,b ⊕ Cc,d := {h ∈ H : h′ ∈ Ka,b ⊕Kc,d}
and

(2.20) t⊙ Ca,b := {h ∈ H : h′ ∈ t⊙Ka,b} .
We will show several auxiliary results, helpful for studying univalence of
integral operators in the next section. To this aim we need the following
result from [17].
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Thorem B (Royster, 1965). For any w ∈ C\{0} the function D ∋ z 7→
f(z) := (1− z)w is univalent if and only if |w + 1| ≤ 2 or |w − 1| ≤ 2.

Using Royster’s Theorem, Lemma 2.5 and Lemma 2.6, we can prove the
following theorem.

Theorem 2.9. For n ∈ N and a, b : Nn → R+
0 the following implications

hold:

(An ≤ 1 and Bn ≤ 3) ⇒ Ca,b ⊂ C ,(2.21)

(An > 1 or Bn > 3) ⇒ Ca,b ̸⊂ S .(2.22)

Proof. Fix n ∈ N and a, b : Nn → R+
0 . By Lemma 2.5 we get Ka,b ⊂

K(An, Bn). If An ≤ 1 and Bn ≤ 3, then f ′ ∈ K(1, 3). It means that f is
a close-to-convex function and it ends the proof of implication (2.21). By
Lemma 2.6 we get K(An, 0) ⊂ Ka,b and K(0, Bn) ⊂ Ka,b. Fix An > 1.
Then setting D ∋ z 7→ f ′(z) := (1 − z)An , we conclude by Lemma 1.2 and
(1.10) that f ′ ∈ K(An, 0)\K(1, 3). Since

f(z) =

z∫
0

(1− u)Andu = − 1

1 +An
· (1− z)1+An +

1

1 +An

and 1+An > 2, from Theorem B we see that the function f is not univalent.
That is Ca,b ̸⊂ S.
Fix Bn > 3. Then setting D ∋ z 7→ f ′(z) := (1 − z)−Bn , by Lemma 1.2
and (1.10) we conclude that f ′ ∈ K(0, Bn)\K(1, 3). Since

f(z) =

z∫
0

1/(1− u)Bndu = − 1

1−Bn
· (1− z)1−Bn +

1

1−Bn

and 1 − Bn < −2, from Theorem B we see that the function f is not
univalent. That is Ca,b ̸⊂ S, which ends the proof of implication (2.22). □

Using equivalences (1.14) and (1.15), we can rewrite Theorem 2.9 in an
equivalent form.

Theorem 2.10. For n ∈ N and a, b : Nn → R+
0 the following implications

hold:

K(An, Bn) ⊂ K(1, 3) ⇒ Ca,b ⊂ C ,(2.23)

K(An, Bn) ̸⊂ K(1, 3) ⇒ Ca,b ̸⊂ S .(2.24)

Remark 2.11. Let us notice that Theorems 2.9 and 2.10 imply the follow-
ing conditions:

• for n ∈ N and a, b : Nn → R+
0 ,

Ca,b ⊂ S ⇐⇒ (An ≤ 1 and Bn ≤ 3) ,

Ca,b ⊂ S ⇐⇒ K(An, Bn) ⊂ K(1, 3) ,
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• for a, b : N1 → R+
0 ,

(a1 ≤ 1 and b1 ≤ 3) ⇒ Ca,b ⊂ C ,

(a1 > 1 or b1 > 3) ⇒ Ca,b ̸⊂ S ,

Ka,b = K(a1, b1) ⊂ K(1, 3) ⇒ Ca,b ⊂ C ,

Ka,b = K(a1, b1) ̸⊂ K(1, 3) ⇒ Ca,b ̸⊂ S ,

Ca,b ⊂ S ⇐⇒ (a1 ≤ 1 and b1 ≤ 3) ,

Ca,b ⊂ S ⇐⇒ Ka,b = K(a1, b1) ⊂ K(1, 3) .

The first two equivalences are necessary and sufficient conditions for univa-
lence of all functions from classes Ca,b which is the result directly related to
classical Kaplan classes. Moreover, we can generalize these conditions to:

(a1 ≤ α0 and b1 ≤ β0) ⇒ Ka,b ⊂ K(α0, β0) ,

(a1 > α0 or b1 > β0) ⇒ Ka,b ̸⊂ K(α0, β0)

for arbitrarily fixed α0, β0 ≥ 0. Implications obtained in this way can be
used to study some geometric properties described by parameters α0 and
β0. For example by setting α0 := 0 and β0 := 2, we get the necessary and
sufficient conditions for convexity of functions from classes Ca,b.

3. The univalence of integral operators. In this section we apply the
generalized Kaplan classes to study several problems in theory of univalence
of integral operators. First we quote the definition of integral operator.

Definition 3.1. Let n ∈ N and t : Nn → R. We consider an integral
operator, which assigns to any fk ∈ Hd for k ∈ Nn the following function

(3.1) D ∋ z 7→ h(z; (f1, . . . , fn); (t1, . . . , tn)) :=

z∫
0

n∏
k=1

f tk
k (u)du

for z ∈ D and Fn := (f1, . . . , fn).

Remark 3.2. Let us notice that for n ∈ N, a, b : Nn → R+
0 , t : Nn → R

and fk ∈ K(ak, bk) for k ∈ Nn, study of univalence of the function (3.1) can
be reduced to studying univalence of functions from classes Ca,b, i.e.{

h(·; (f1, . . . , fn); t) : ∀
k∈Nn

fk ∈ K(ak, bk)
}

= (t1 ⊙ C(a1),(b1))⊕ . . .⊕ (tn ⊙ C(an),(bn))

for t : Nn 7→ R and a, b : Nn 7→ R+
0 .

To this aim we can appeal to Theorem 2.9 and 2.10. In particular we can
simplify proofs or generalize results obtain in [10], [15], [16] and [17].
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In this section we will use the following operators.

• If n = 1 and f1 = g/ Id, where g ∈ H, then

(3.2) D ∋ z 7→ h
(
z;
( g

Id

)
; (t2)

)
=

z∫
0

(
g(u)

u

)t2

du

is an integral operator of the first type (see [7, 9]).
• If n = 1 and f1 = f ′, where f ∈ H, then

(3.3) D ∋ z 7→ h(z; (f ′); (t1)) =

z∫
0

(f ′(u))t1du

is an integral operator of the second type (see [7, 15]).
• If n = 2, f1 = f ′ and f2 = g/ Id, where f, g ∈ H, then

(3.4) D ∋ z 7→ h
(
z;
(
f ′,

g

Id

)
; (t1, t2)

)
=

z∫
0

(f ′(u))t1
(
g(u)

u

)t2

du

is an integral operator studied in many papers (see [6]).
• If n = 2, f1 = f ′ and f2 = g′, where f, g ∈ H, then

(3.5) D ∋ z 7→ h
(
z;
(
f ′, g′

)
; (t1, t2)

)
=

z∫
0

(f ′(u))t1
(
g′(u)

)t2 du
is an integral operator studied in many papers (see [14]).

• If n = 2, f1 = f/ Id and f2 = g/ Id, where f, g ∈ H, then

(3.6) D ∋ z 7→ h

(
z;

(
f

Id
,
g

Id

)
; (t1, t2)

)
=

z∫
0

(
f(u)

u

)t1 (g(u)

u

)t2

du

is an integral operator studied in many papers (see [7]).
• If n = 3, f1 = f ′

1, f2 = f2/ Id and f3 = f ′
3, where f1, f2, f3 ∈ H,

then for every z ∈ D

(3.7) h

(
z;

(
f ′
1,
f2
Id

, f ′
3

)
; (t1, t2, t3)

)
=

z∫
0

(f ′
1(u))

t1

(
f2(u)

u

)t2

(f ′
3(u))

t3du

is an integral operator introduced by us. If t1 = 0 or t2 = 0 or
t3 = 0, then (3.7) reduces to one of (3.2)–(3.5), classically studied.
We study the operator given by (3.7) for functions f1 ∈ K, f2 ∈ S∗

and f3 ∈ C obtaining the necessary and sufficient conditions for its
univalence.
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3.1. Generalization of univalence problem. For all α1, α2, β1, β2 ≥ 0,
α1 + β1 > 0, α2 + β2 > 0 and k, n ∈ {−1, 1} we define

1

0
:= lim

α→0+

1

α
= +∞ ,

d1 :=

∣∣∣∣ α1 α2

β1 β2

∣∣∣∣ , d2 :=

∣∣∣∣ α1 β2
β1 α2

∣∣∣∣ ,
d+ := n+ k , d− := n− k ,

Ak,n :=

(
−2α2(2 + n) + 2β2(2− n)

(n+ k)d1 + (n− k)d2
,
−2β1(2− k) + 2α1(2 + k)

(n+ k)d1 + (n− k)d2

)
,

Bk,n :=

(
d+
2

min

{
4− d+
2α1

,
4 + d+
2β1

}
,
d−
2

min

{
4− d−
2α2

,
4 + d−
2β2

})
and we denote

A :=

{
Ak,n : k, n ∈ {−1, 1} and α1(1 + 2k) + β1(1− 2k)

α2(1 + 2n) + β2(1− 2n)
< 0

}
,

B := {Bk,n : k, n ∈ {−1, 1}} .

Lemma 3.3. For all α1, α2, β1, β2 ≥ 0, α1 + β1 > 0, α2 + β2 > 0 and
k, n ∈ {−1, 1} the condition A ∈ {0, 1, 2} holds, where A denotes the power
of the set A.

Proof. From the definition of A we see that A ≤ 4. Assume that A = 4.
Then the following system of inequalities holds:

(3.8)


(3α1 − β1)(3α2 − β2) < 0 ,

(3α1 − β1)(3β2 − α2) < 0 ,

(3β1 − α1)(3α2 − β2) < 0 ,

(3β1 − α1)(3β2 − α2) < 0 .

Adding the above inequalities by sides we get

4(α1 + β1)(α2 + β2) < 0 ,

which leads to the contradiction. Hence A ≤ 3.
Now assume that A = 3. Then exactly three of the inequalities from
(3.8) hold. Without loosing generality, we can assume that the first three
inequalities from (3.8) hold. Multiplying them by sides we get

(3α1 − β1)
2(3α2 − β2)

2(3β2 − α2)(3β1 − α1) < 0 ,

from which we obtain (3β2 − α2)(3β1 − α1) < 0, which leads to the contra-
diction. Hence A ≤ 2.
To prove that A can be equal to 2, it is enough to set α1 = α2 = 0 and
take arbitrary β1, β2 > 0. To prove that A can be equal to 1, it is enough
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to set α1 = 1, α2 = 5, β1 = 3 and β2 = 1. To prove that A can be equal to
0, it is enough to set α1 = α2 = β1 = β2 = 1. □

Define the class C(α, β) := {f ∈ H : f ′ ∈ K(α, β)} for α, β ≥ 0. Now for
the polygon given by

P := conv (A ∪B)

we have the following theorem.

Theorem 3.4. If α1, α2, β1, β2 ≥ 0, α1+β1 > 0, α2+β2 > 0, f ∈ K(α1, β1),
g ∈ K(α2, β2), (t1, t2) ∈ P and h(·; (f, g); (t1, t2)) is given by (3.1), then
the function h(·; (f, g); (t1, t2)) ∈ C. Moreover, for each pair (t1, t2) /∈ P
exist functions f ∈ K(α1, β1) and g ∈ K(α2, β2), such that the operator
h(·; (f, g); (t1, t2)) /∈ S.

Proof. Assume that t1, t2 ∈ R. Then

{h(·; (f, g); (t1, t2)) : f ∈ K(α1, β1), g ∈ K(α2, β2)}
= t1 ⊙ C(α1, β1)⊕ t2 ⊙ C(α2, β2)

= C(
α1+β1

2
|t1|+α1−β1

2
t1
)
,
(

α1+β1
2

|t1|−α1−β1
2

t1
).

By Theorem 2.9 we get the following system of inequalities

(3.9)


α1 + β1

2
|t1|+

α1 − β1
2

t1 +
α2 + β2

2
|t2|+

α2 − β2
2

t2 ≤ 1 ,

α1 + β1
2

|t1| −
α1 − β1

2
t1 +

α2 + β2
2

|t2| −
α2 − β2

2
t2 ≤ 3 .

Since (3.9) contains absolute values of t1 and t2, we should consider four
cases. Now we assume that t1, t2 ≥ 0. Then (3.9) takes the following form

(3.10)
{

α1t1 + α2t2 ≤ 1 ,

β1t1 + β2t2 ≤ 3 .

For t1 = 0 we get

t2 ≤ min

{
1

α2
,
3

β2

}
and for t2 = 0 we get

t1 ≤ min

{
1

α1
,
3

β1

}
.

Hence (
0,min

{
1

α2
,
3

β2

})
= B−1,1

and (
min

{
1

α1
,
3

β1

}
, 0

)
= B1,1
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are the extremal points reached on axes by (3.10) for t1, t2 ≥ 0. The system
of equations

(3.11)
{

α1t1 + α2t2 = 1 ,

β1t1 + β2t2 = 3

has a single solution for t1, t2 > 0 if and only if (3α1 − β1)(3α2 − β2) < 0.
This solution has the form

(3.12) (t1, t2) =

(
β2 − 3α2

α1β2 − α2β1
,

3α1 − β1
α1β2 − α2β1

)
= A1,1 ,

which ends the proof of the case t1, t2 ≥ 0. Three remaining cases can be
proved analogously and we get the following points

B−1,1, B−1,−1, A−1,1, for t1 ≤ 0 and t2 ≥ 0 ,
B−1,−1, B1,−1, A−1,−1, for t1 ≤ 0 and t2 ≤ 0 ,
B1,−1, B1,1, A1,−1, for t1 ≥ 0 and t2 ≤ 0 . □

Remark 3.5. Let us notice that the polygon P can be a convex hull of
four, five or six points, because A ≤ 2 and B = 4.

Remark 3.6. Let us notice that if α1 = β1 = 0 or α2 = β2 = 0, then
f ∈ K(0, 0) or g ∈ K(0, 0). In this case, from the implication (1.8), we see
that the operator h(·; (f, g); (t1, t2)) given by (3.1) is reduced to h(·; (g); (t2))
or h(·; (f); (t1)), respectively.

Theorem 3.4 allows us to achieve the necessary and sufficient condition
for univalence of an operator h for any functions from Kaplan classes. Now
we show the example of use of this condition.

Example 3.7. Consider the function h(·; (f, g); (t1, t2)) given by (3.4) for
f ∈ K(1/4, 1/2) and g ∈ K(1, 1/5). From Theorem 3.4 we get

A ∪B =

{(
4, 0

)
,

(
0, 1

)
,

(
− 2, 0

)
,

(
0,−3

)
,

(
−8

9
,−25

9

)
,

(
8

3
,−5

3

)}
.

Let us notice that this example is important, because we cannot use the
Sheil-Small factorization theorem when (α1 − β1)(α2 − β2) < 0 as it is in
this case.

3.2. Simplified proofs. Methods used in Theorem 3.4 can also be applied
in proofs of many theorems with integral operators given by (3.2)–(3.6) for
classes K, S∗ and C. This allows us to simplify proofs. As an example we
give two alternative proofs of the following theorem from [10].
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Theorem 3.8 (Kim and Merkes, 1974). Assume that

P1 = conv

({(
−1

2
,
3

2

)
,

(
0,
3

2

)
,

(
3

2
,0

)
,

(
3

2
,−1

2

)
,

(
0,−1

2

)
,

(
−1

2
,0

)})
,

f ∈K and g ∈ S∗. Then the operator h(·; (f ′,g/ Id); (t1, t2)) given by (3.4)
is in C for each pair (t1, t2)∈P1. Moreover, for each pair (t1, t2) /∈P1 there
exist functions f ∈K, and g∈S∗ such that operator h(·; (f ′,g/Id);(t1, t2)) is
not univalent in D.

Proof. Method I. Assume that t1, t2 ∈ R. Then{
h
(
·;
(
f ′,

g

Id

)
; (t1, t2)

)
: f ∈ K, g ∈ S∗

}
= t1 ⊙ C(0, 2)⊕ t2 ⊙ C(0, 2)

= C(
|t1|+t1

2
·0+ |t1|−t1

2
·2+ |t2|+t2

2
·0+ |t2|−t2

2
·2
)
,
(

|t1|+t1
2

·2+ |t1|−t1
2

·0+ |t2|+t2
2

·2+ |t2|−t2
2

·0
)

= C(|t1|−t1+|t2|−t2),(|t1|+t1+|t2|+t2) .

From Theorem 2.9 we get the following system of inequalities{
|t1| − t1 + |t2| − t2 ≤ 1 ,

|t1|+ t1 + |t2|+ t2 ≤ 3 ,

from which (t1, t2) ∈ P1.
Method II. We know that f ′, g/ Id ∈ K(0, 2). Therefore for k, n ∈ {−1, 1}
we get

Ak,n =

(
2− n

k − n
,
k − 2

k − n

)
and

Bk,n =

(
(n+ k)(4 + n+ k)

8
,
(n− k)(4 + n− k)

8

)
,

from which we obtain

A =

{(
3

2
,−1

2

)
,

(
−1

2
,
3

2

)}
and

B =

{(
3

2
, 0

)
,

(
−1

2
, 0

)
,

(
0,−1

2

)
,

(
0,

3

2

)}
.

Setting P1 := conv(A ∪B), from Theorem 3.4 we get

h
(
·; f ′,

( g

Id

)
; (t1, t2)

)
∈ C

for all f ∈ K, g ∈ S∗ and (t1, t2) ∈ P1. Moreover, there exist functions
f ∈ K and g ∈ S∗ such that

h
(
·; f ′,

( g

Id

)
; (t1, t2)

)
/∈ S

for (t1, t2) /∈ P1. □

Results from [4], [5], [7], [10] and [15] are presented here as simple corol-
laries of Theorem 3.4.
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Corollary 3.9. If f ∈ K, t1 ∈ [−1/2; 3/2] and h(·; (f ′); (t1)) is given by
(3.2), then h(·; (f ′); (t1)) ∈ C. Moreover, if t1 ̸∈ [−1/2; 3/2], then there
exists f ∈ K such that h(·; (f ′); (t1)) given by (3.2) is not univalent.

Corollary 3.10. If f ∈ C, t1 ∈ [−1/3; 1] and h(·; (f ′); (t1)) is given by
(3.2), then h(·; (f ′); (t1)) ∈ C. Moreover, if t1 ̸∈ [−1/3; 1], then there exists
f ∈ C such that h(·; (f ′); (t1)) given by (3.2) is not univalent.

Corollary 3.11. If g ∈ S∗, t2 ∈ [−1/2; 3/2] and h(·; (g/ Id); (t2)) is given by
(3.3), then h(·; (g/ Id); (t2)) ∈ C. Moreover, if t2 ̸∈ [−1/2; 3/2], then there
exists g ∈ S∗ such that h(·; (g/ Id); (t2)) given by (3.3) is not univalent.

Corollary 3.12. Assume that

P2 = conv

({(
−1

3
,
4

3

)
,

(
0,

3

2

)
,

(
1, 0

)
,

(
0,−1

2

)
,

(
−1

3
, 0

)})
,

f ∈ C and g ∈ S∗. Then the operator h(·; (f ′, g/ Id); (t1, t2)) given by (3.4)
is in C for each pair (t1, t2) ∈ P2. Moreover, for each pair (t1, t2) /∈ P2 there
exist functions f ∈ C and g ∈ S∗ such that h(·; (f ′, g/ Id); (t1, t2)) given by
(3.4) is not univalent.

Corollary 3.13. Assume that

P3 = conv

({(
−1

2
,
3

2

)
,

(
0,
3

2

)
,

(
3

2
,0

)
,

(
3

2
,−1

2

)
,

(
0,−1

2

)
,

(
−1

2
,0

)})
and f,g ∈K. Then the operator h(·; (f ′,g′); (t1, t2)) given by (3.5) is in C
for each pair (t1, t2)∈ P3. Moreover, for each pair (t1, t2) /∈ P3 there exist
functions f ∈K, and g∈K such that h(·;(f ′,g′);(t1, t2)) given by (3.5) is not
univalent.

Corollary 3.14. Assume that

P4 = conv

({(
−1

3
,
4

3

)
,

(
0,

3

2

)
,

(
1, 0

)
,

(
0,−1

2

)
,

(
−1

3
, 0

)})
,

f ∈ K and g ∈ C. Then the operator h(·; (f ′, g′); (t1, t2)) given by (3.5) is in
C for each pair (t1, t2) ∈ P4. Moreover, for each pair (t1, t2) /∈ P4 there exist
functions f ∈ K, and g ∈ C such that h(·; (f ′, g′); (t1, t2)) given by (3.5) is
not univalent.

Corollary 3.15. Assume that

P5 = conv

({(
−1

3
, 0

)
,

(
0, 1

)
,

(
1, 0

)
,

(
0,−1

3

)})
,

f ∈ C and g ∈ C. Then the operator h(·; (f ′, g′); (t1, t2)) given by (3.5) is in
C for each pair (t1, t2) ∈ P5. Moreover, for each pair (t1, t2) /∈ P5 there exist
functions f ∈ C, and g ∈ C such that h(·; (f ′, g′); (t1, t2)) given by (3.5) is
not univalent.
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Corollary 3.16. Assume that

P6 = conv

({(
−1

2
,
3

2

)
,

(
0,
3

2

)
,

(
3

2
,0

)
,

(
3

2
,−1

2

)
,

(
0,−1

2

)
,

(
−1

2
,0

)})
and f,g ∈ S∗. Then the operator h(·; (f/ Id,g/ Id); (t1, t2)) given by (3.6) is
in C for each pair (t1, t2)∈ P6. Moreover, for each pair (t1, t2) /∈ P6 there
exist functions f ∈ S∗, and g ∈ S∗ such that h(·; (f/ Id,g/ Id); (t1, t2)) given
by (3.6) is not univalent.

Let us notice that P2 = P4 and P3 = P6. This fact follows also from
Alexander’s Theorem.
Causey and Reade considered the classes Bm form > 0 partly referring to
the Kaplan classes (see [4, p. 9]). However, the nature of these classes caused
them to obtain very limited results. Firstly, they applied only functions f
of specific classes under the integral

z∫
0

(f ′(t))α
(
f(t)

t

)1−α

dt

and secondly, they received only a sufficient condition of univalence (see [4]).

3.3. Extension of univalence problem. Methods described in this work
allow us to expand the necessary and sufficient condition for univalence of
the operator h to operators of greater dimensions. Now we present the
following theorem for the operator given by (3.7).

Theorem 3.17. Assume that

P7 =conv

({(
0, 0, 1

)
,

(
0,−1

2
, 0

)
,

(
3

2
,−1

2
, 0

)
,

(
4

3
, 0,−1

3

)
,

(
3

2
, 0, 0

)
,(

0, 0,−1

3

)
,

(
−1

2
, 0, 0

)
,

(
−1

2
,
3

2
, 0

)
,

(
0,

3

2
, 0

)
,

(
0,

4

3
,−1

3

)})
,

f1 ∈ K, f2 ∈ S∗ and f3 ∈ C. Then for each (t1, t2, t3) ∈ P7 the operator
h(·; (f ′

1, f2/ Id, f
′
3); (t1, t2, t3)) given by (3.7) is in C. Moreover, for each

(t1, t2, t3) /∈ P7 there exist functions f1 ∈ K, f2 ∈ S∗ and f3 ∈ C such that
h(·; (f ′

1, f2/ Id, f
′
3); (t1, t2, t3)) given by (3.7) is not univalent.

Proof. Assume that t1, t2, t3 ∈ R. Then we have{
h

(
·;
(
f ′
1,
f2
Id

, f ′
3

)
; (t1, t2, t3)

)
: f1 ∈ K, f2 ∈ S∗, f3 ∈ C

}
= t1 ⊙ C(0, 2)⊕ t2 ⊙ C(0, 2)⊕ t3 ⊙ C(1, 3)

= C(|t1|−t1+|t2|−t2+2|t3|−t3),(|t1|+t1+|t2|+t2+2|t3|+t3) .
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By Theorem 2.9 we get the following system of inequalities{
|t1| − t1 + |t2| − t2 + 2|t3| − t3 ≤ 1 ,

|t1|+ t1 + |t2|+ t2 + 2|t3|+ t3 ≤ 3 ,

from which (t1, t2, t3) ∈ P7. □

Figure 1. The set P7.

Now we present a necessary and sufficient condition for univalence of any
operator h given by (3.1).

Theorem 3.18. Assume that n ∈ N, t : Nn → R, fk ∈ K(αk, βk) for
αk, βk ≥ 0 and k ∈ Nn. Let P8 ⊂ Rn such that x = (x1, x2, . . . , xn) ∈ P8 if
and only if

α1 + β1
2

|x1|+
α1 − β1

2
x1 + · · ·+ αn + βn

2
|xn|+

αn − βn
2

xn ≤ 1 ,

α1 + β1
2

|x1| −
α1 − β1

2
x1 + · · ·+ αn + βn

2
|xn| −

αn − βn
2

xn ≤ 3 .

Then for each t ∈ P8 the operator h(·;Fn; t) given by (3.1) is in C. Moreover,
for each t /∈ P8 there exist functions fk ∈ K(αk, βk) for k ∈ Nn such that
h(·;Fn; t) given by (3.1) is not univalent.

Proof. Assume that n ∈ N, t : Nn → R. Then analogously as in the
previous case we have{

h (·; (f1, f2 . . . , fn) ; (t1, t2, . . . , tn)) : ∀
k∈Nn

fk ∈ K(αk, βk)

}
= t1 ⊙ C(α1, β1)⊕ t2 ⊙ C(α2, β2)⊕ · · · ⊕ tn ⊙ C(αn, βn) .
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By Theorem 2.9 we get the following system of inequalities
α1 + β1

2
|t1|+

α1 − β1
2

t1 + · · ·+ αn + βn
2

|tn|+
αn − βn

2
tn ≤ 1 ,

α1 + β1
2

|t1| −
α1 − β1

2
t1 + · · ·+ αn + βn

2
|tn| −

αn − βn
2

tn ≤ 3 ,

from which t ∈ P8. □
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