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On a variant of Jessen–Mercer’s inequality

Abstract. A new variant of Mercer’s inequality [A.McD. Mercer, A variant
of Jensen’s inequality, J. Inequal. Pure Appl. Math. 4(4) (2003) Article
73] of Jessen’s type is given. Moreover, versions of Chebyshev’s inequality
and Hardy–Littlewood– Pólya inequality for some abstract nonnegative linear
functionals are obtained.

1. Introduction and motivation. Jensen’s inequality [13] reads:
If f is a convex function on an interval I containing real numbers xk
(k = 1, . . . , n), then

(1) f

(
n∑

k=1

wkxk

)
≤

n∑
k=1

wkf(xk)

whenever wk (k = 1, . . . , n) are positive weights with the sum equal to 1.
The following integral version of (1) also holds true (see e.g. [27, Theo-
rem 2.3]):

(2) f

(∫
E
w(t)x(t)dµ(t)

)
≤
∫
E
w(t)f(x(t))dµ(t),

where w : E → [0,∞] and x : E → I are functions that are integrable with
respect to some nonnegative measure µ on a σ-algebra of subsets of a set E
with

∫
E w(t)dµ(t) = 1.
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Mercer [19, Theorem 1.2] proved the following variant of (1).
Let α, β, xk be real numbers with α ≤ xk ≤ β (k = 1, . . . , n). If f is a
convex function defined on an interval containing α and β, then

(3) f

(
α+ β −

n∑
k=1

wkxk

)
≤ f(α) + f(β)−

n∑
k=1

wkf(xk).

The main step in his argumentation was [19, Lemma 1.3]:
if f is a convex function on a interval containing the numbers α ≤ y ≤ β,
then

f (α+ β − y) ≤ f(α) + f(β)− f(y).

Following Mercer’s idea, by (2) and the above lemma we easy obtain the
following observation.
Let y = y(s) and w = w(s) be µ-measurable functions, where α ≤ y(s) ≤

β, s ∈ E for certain real numbers α ≤ β, the function w is positive and
integrable up to 1.
If f is a convex function on an interval containing α and β, then

(4) f

(
α+β−

∫
E
w(s)y(s)dµ(s)

)
≤ f(α)+f(β)−

∫
E
w(s)(f ◦y)(s)dµ(s).

Mercer’s inequality (3) gave rise to many generalizations and applications,
see Abramovich et al. [1, 2, 3] Klaričić Bakula et al. [4, 5], Barić et al. [6],
Cheung et al. [8], Gavrea [10], Matković et al. [16, 17, 18] and many others.
In [22] (cf. also [23]), Niezgoda gave the following generalization of (3):

(5) f

 m∑
j=1

yj −
m−1∑
j=1

n∑
i=1

wixij

 ≤
m∑
j=1

f(yj)−
m−1∑
j=1

n∑
i=1

wif(xij),

where wi ≥ 0,
∑n

i=1wi = 1, (yj) is a real m-tuple, (xij) is a real n × m
matrix and f is a convex function on an interval containing all of yj and xij .
He proved that (5) holds if them-tuple (yj)majorizes each row of the matrix
(xij) [22, Theorem 2.1] or

∑m
k=1(yk − xik) = 0 and (yj) − (xij) and (xij)

are pairs of separable m-tuples for every i = 1, 2, . . . , n [22, Theorem 3.1].
The key tool in both cases was Hardy–Littlewood–Pólya inequality (HLP-
inequality, for short), see [11, 9, 20, 21]:

(6)
m∑
j=1

pjf(xj) ≤
m∑
j=1

pjf(yj),

where f is a real convex function, (xj), (yj) are real m-tuples and (pj) is an
m-tuple with positive entries.
The integral version of inequality (6):

(7)
∫
E
(f ◦ x)(s)p(s)dµ ≤

∫
E
(f ◦ y)(s)p(s)dµ,
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where x(t), y(s), p = p(t) are measurable and p(x) is nonnegative with∫
p(t)dµ > 0, also holds true under appropriate assumptions about the inte-
grand functions, see e.g. [7, 11, 26]. Continuous generalizations of inequality
(5) were studied in [12, 15, 26].
The functionals A(x) =

∑n
k=1wkxk and A(x) =

∫
E w(t)x(t)dµ(t), occur-

ring in Jensen’s inequalities (1) and (2), are fundamental examples of linear
means.
An abstract linear mean is a linear nonnegative functional A acting on a
certain real linear space L of some real-valued functions defined on a given
nonempty set E such that L contains the function I constantly equal to 1
and A(I) = 1.
For x ∈ L and A being a linear mean on L, the following inequality
established by Jessen [14] (see also [27, Theorem 2.4]):

(8) f(A(x)) ≤ A(f ◦ x)

generalizes both versions of Jensen’s inequalities (1) and (2).
An inequality generalizing in the same spirit two Mercer’s variants of
Jensen inequality (3) and (4), i.e.,

(9) f (α+ β −A(z)) ≤ f(α) + f(β)−A(f ◦ z),

where z ∈ L and α ≤ z(s) ≤ β, s ∈ E, was obtained in [8].
In Section 3 of this article, we will prove a counterpart of the inequality
(5) for linear means and linear nonnegative functionals acting on abstract
spaces of real bounded functions. Simultaneously, this result generalizes
an integral version of the inequality given recently by the author in [26,
Theorem 3] and provides an answer for open problem raised in [15]. The
path to the goal leads through the generalizations of Chebyshev’s inequality
and HLP inequality for nonnegative functionals. This topic is considered in
Section 2.

2. Versions of Chebyshev’s inequality and HLP-inequality for non-
negative functionals. Let L be a class of some bounded real-valued func-
tions measurable with respect to a given σ-algebra of subsets of a nonempty
base set E, having the properties:
L1: x, y ∈ L ⇒ αx+ βy ∈ L for all α, β ∈ R;
L2: the index functions IZ of measurable sets Z ⊂ E belong to L;
L3: x, y ∈ L ⇒ xy ∈ L.
Let B be a linear nonnegative functional on L, i.e. any real linear func-
tional with x ≥ 0 ⇒ B(x) ≥ 0, x ∈ L. For linear functionals, nonnegativity
is equivalent to isotonicity: x ≤ y ⇒ B(x) ≤ B(y), x, y ∈ L.
The inequality (see e.g. [27, Section 7.1])

(10)
∫
E
a(s)p(s)dµ

∫
E
b(s)p(s)dµ ≤

∫
E
a(s)b(s)p(s)dµ

∫
E
p(s)dµ,
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where a, b and positive p are measurable functions with respect to some
nonnegative measure µ on a σ-algebra of subsets of a set E holds for similarly
ordered a and b, i.e.,

[a(s)− a(t)][b(s)− b(t)] ≥ 0, for s, t ∈ [0, 1],

provided that the integrals exist and
∫
E p(s)dµ > 0.

This is a newer version of the well-known classical inequality established
by Chebyshev in years 1882–1883. There are several results which show
that (10) is valid under more general conditions, see e.g. [24]. Note that∫
E a(s)p(s)dµ is an example of nonnegative functional B that acts on a ∈ L.
Here, we are particularly interested in a general variant of Chebyshev’s
inequality for nonnegative functionals.

Proposition 1. Let a, b ∈ L and B be a nonnegative linear functional on L.
If a and b are similarly ordered, then

(11) B(a)B(b) ≤ B(ab)B(I).

Proof. Inequality (11) is a consequence of the following identity:

B(ab)B(I)−B(a)B(b) =
1

2
Bs(Bt[a(s)− a(t)][b(s)− b(t)]),

where Bt and Bs are copies of B acting on functions of t variable or s
variable, respectively. □

For further considerations we recall some well-known results on convex
functions (see e.g. [28, Theorem 2.1.5]). Let f : R → R be a convex function.
The function f is continuous on R. There exist finite f ′

−(t) and f ′
+(t),

i.e. the left-hand and the right-hand derivative of first order, respectively,
for all t ∈ R. If t1 < t2, then f ′

−(t1) ≤ f ′
+(t1) ≤ f ′

−(t2) ≤ f ′
+(t2). The

subdifferential of f denoted by ∂f is the set of all functions ϕ : R → R such
that f ′

−(t) ≤ ϕ(t) ≤ f ′
+(t). Every ϕ ∈ ∂f is a nondecreasing function. If

f is nondecreasing convex, then f ′
− and f ′

+ are both nonnegative showing
that ϕ is nonnegative, too. Moreover, for every s, t ∈ R and ϕ ∈ ∂f ,

(12) f(s)− f(t) ≥ (s− t)ϕ(t).

It is known (see [7, 9, 21, 25]), that Chebyshev’s type inequalities yields
generalizations of HLP-inequalities. This is confirmed by the next result.

Proposition 2. Let f : R → R be a convex function with ϕ ∈ ∂f and B be
a linear nonnegative functional on L with A(I) > 0.
For x, y ∈ L such that f ◦ x, f ◦ y, ϕ ◦ x ∈ L, the inequality

(13) B(f ◦ x) ≤ B(f ◦ y)
is valid if y − x and x are similarly ordered and

(14) B(y) = B(x) or

{
f is nondecreasing,
B(y) ≥ B(x).



A variant of Jessen–Mercer’s inequality 79

Proof. By (12), (f ◦ y)(t)− (f ◦ x)(t) ≥ [y(t)− x(t)](ϕ ◦ x)(t) for all t ∈ E.
The functions f ◦ y, f ◦ x, (y − x) · ϕ ◦ x are bounded, so belong to L.
Isotonicity of B gives

(15) B(f ◦ y)−A(f ◦ x) ≥ B((y − x)ϕ ◦ x).

Clearly, x and ϕ◦x are similarly ordered for any nondecreasing ϕ : R → R.
By the hypothesis, y − x and x are similarly ordered. As a consequence,

[(y(s)− x(s))− (y(t)− x(t))][x(s)− x(t)]2[ϕ ◦ x(s)− ϕ ◦ x(t)] ≥ 0

and x(s)− x(t) = 0 implies ϕ ◦ x(s)− ϕ ◦ x(t) = 0 for all s, t ∈ E. It follows
that y − x and ϕ ◦ x are similarly ordered. Moreover, ϕ ◦ x is bounded
whenever y is bounded, because ϕ ∈ ∂f is nondecreasing and finite at every
point of its domain R.
Utilizing Chebyshev’s type inequality (11), we get

(16) B((y − x)ϕ ◦ x) ≥ B(y − x)B(ϕ ◦ x)
B(I)

.

Combining inequalities (15) and (16), we conclude (13) whenever (14), be-
cause every ϕ ∈ ∂f is nonnegative for nondecreasing f and consequently,
B(ϕ ◦ x) ≥ 0. □

Recently, related results in case of integrals were obtained by Barnett et
al. [7, Theorems 6–7] and Otachel [26, Theorem 2].

3. A variant of Mercer’s inequality in Jessen’s sense. Let L and
K be real linear spaces of some bounded real-valued measurable functions
defined on given nonempty base sets E and F , respectively, that fulfil con-
ditions L1–L3 from Section 2.
Consider a linear and nonnegative functional B on K and fix 0 ≤ b ∈ K

such that B(b) > 0. It is clear that the functional h 7→ B(hb)
B(b) is a linear

mean defined for h ∈ K.

Theorem 1. Let A be a linear mean on L, B be a linear nonnegative
functional on K and f : R → R be a convex function with f(L) ⊂ L.
Assume that xs = xs(t) = x(s, t), y = y(t), s ∈ E, t ∈ F , are bounded
real-valued functions, a = a(t), b = b(t), t ∈ F are bounded nonnegative
functions with a(t) + b(t) = 1, t ∈ F and B(b) > 0, such that xs, y, a, b,
f ◦ y, f ◦ xs, ϕ ◦ xs ∈ K, s ∈ E, ϕ ∈ ∂f and B(axs), B(af ◦ xs) ∈ L.
If y − xs and xs are similarly ordered for every s ∈ E and

(17) B(y) = B(xs), s ∈ E,

then

(18) f

(
B(y)

B(b)
− AB(axs)

B(b)

)
≤ B(f ◦ y)

B(b)
− AB(af ◦ xs)

B(b)
.
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Proof. By identity (17), for any s ∈ E we have

(19) f

(
B(y)

B(b)
− B(axs)

B(b)

)
= f

(
B(bxs)

B(b)

)
.

Since B(bxs)
B(b) is a linear mean acting on xs, applying Jessen’s inequality (8),

we get

(20) f

(
B(bxs)

B(b)

)
≤ B(bf ◦ xs)

B(b)
.

According to Proposition 2, inequality (13) leads to

(21)
B(af ◦ xs)

B(b)
+

B(bf ◦ xs)
B(b)

=
B(f ◦ xs)

B(b)
≤ B(f ◦ y)

B(b)
.

Thus, by (19), (20) and (21), we conclude that

(22) f

(
B(y)

B(b)
− B(axs)

B(b)

)
≤ B(f ◦ y)

B(b)
− B(af ◦ xs)

B(b)
, s ∈ E.

According to our assumptions, both sides of inequality (22) are functions
(of variable s) from the space L. Since A is a linear mean, we obtain

Af

(
B(y)

B(b)
− B(axs)

B(b)

)
≤ B(f ◦ y)

B(b)
− AB(af ◦ xs)

B(b)
.

On the other hand, applying Jessen’s inequality (8) second time, we see
that

f

(
B(y)

B(b)
− AB(axs)

B(b)

)
≤ Af

(
B(y)

B(b)
− B(axs)

B(b)

)
.

Combining the above two inequalities, we derive inequality (18). □

Remark 1. If a(t) ≡ 0, then b ≡ 1 and consequently, inequalities (18) and
(22) reduce to

f

(
B(y)

B(I)

)
≤ B(f ◦ y)

B(I)
,

which is a variant of Jessen’s inequality (8) for the linear mean B(y)
B(I) .

In the example below we show that inequality (9) is a particular case of
inequality (18) obtained in Theorem 1.

Example 1. For B(y) = y1 + y2, y = (y1, y2) ∈ K = R2 and an arbitrary
chosen function z = z(s) ∈ L, where α ≤ z(s) ≤ β, s ∈ E, for some
α, β ∈ R, let us define

a = (1, 0), E1 =

{
s ∈ E : α ≤ z(s) <

α+ β

2

}
,

b = (0, 1), E2 =

{
s ∈ E :

α+ β

2
≤ z(s) ≤ β

}
,
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y = (α, β), x =

{
(z(s), α+ β − z(s)), s ∈ E1,

(0, 0), s ∈ E2,

ỹ = (β, α), x̃ =

{
(z(s), α+ β − z(s)), s ∈ E2,

(0, 0), s ∈ E1.

Additionally, assume the mathematical objects introduced above satisfy the
remaining compliance conditions specified in Theorem 1. It is easily seen
that y − xs and xs are similarly ordered and ỹ − x̃s and x̃s are similarly
ordered, for s ∈ E and for any function f : R → R we have

(23)

B(b) = 1,

B(y) = B(xs) = α+ β,

B(f ◦ y) = B(f ◦ ỹ) = f(α) + f(β),

B(ỹ) = B(x̃s) = α+ β,

B(af ◦ xs) = (f ◦ z)(s), s ∈ E1,

B(axs) = z(s), s ∈ E1,

B(af ◦ x̃s) = (f ◦ z)(s), s ∈ E2,

B(ax̃s) = z(s), s ∈ E2.

Based on Theorem 1, if f is convex and A is a linear mean on L such that
A(IEk

) > 0, k = 1, 2, we state that inequality (18) is valid for systems

of objects A1, B, y, x, a, b and A2, B, ỹ, x̃, a, b, where Akh =
A(hIEk

)

A(IEk
) , h ∈

L, k = 1, 2 are linear means on L. In fact, by (23) we obtain

(24) f (α+ β −Ak(z)) ≤ f(α) + f(β)−Ak(f ◦ z), k = 1, 2.

Multiplying inequalities (24) by εk := A(IEk
) > 0, k = 1, 2 and summing

over k, we get

(25)
ε1f (α+ β −A1(z)) + ε2f (α+ β −A2(z))

≤ f(α) + f(β)− (ε1A1 + ε2A2) (f ◦ z) = f(α) + f(β)−A(f ◦ z),
because ε1 + ε2 = 1 and ε1A1 + ε2A2 = A.
On the other hand, the convexity of f ensures

(26)
ε1f (α+ β −A1(z)) + ε2f (α+ β −A2(z))

≥ f (α+ β − (ε1A1 + ε2A2) (z)) = f (α+ β −A(z)) .

Combining (25) and (26), we obtain (18).

The specification described in the next example reduces inequality (18)
to Niezgoda’s inequality (5) (cf. [22, Theorem 3.1, Corollary 3.3]).

Example 2. Using notation as in Theorem 1, let L = Rn and K = Rm.
For y = (y1, . . . , ym) ∈ K, z = (z1, . . . , zn) ∈ L and given positive vectors
(p1, . . . , pm) and (w1, . . . , wn) with

∑n
s=1ws = 1 define A(z) =

∑n
s=1wszs,
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the linear mean on L and B(y) =
∑m

t=1 ptyt, the nonnegative linear func-
tional on K. Let x = (xst) be a real matrix n × m, a = (1, . . . , 1, 0), b =
(0, . . . , 0, 1) ∈ Rm.
If (y1 − xs1, . . . , ym − xsm) and (xs1, . . . , xsm) are similarly ordered and
the condition (17) holds in the form

∑m
t=1 ptyt =

∑m
t=1 ptxst, for every

s = 1, . . . , n, then by Theorem 1 we get (18) in the form

f

(
1

pm

{
m∑
t=1

ptyt −
m−1∑
t=1

pt

n∑
s=1

wsxst

})

≤ 1

pm

{
m∑
t=1

ptf(yt)−
m−1∑
t=1

pt

n∑
s=1

wsf(xst)

}
,

where f : R → R is a convex function. If pt = pm for every t = 1, . . . ,m,
the above inequality becomes (5).
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[5] Klaričić Bakula, M., Matković, A., Pečarić, J., On the Jensen–Steffensen inequality
for generalized convex functions, Period. Math. Hungar. 55(1) (2007), 19–34.
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