The Legendre maps from two Lagrangians or from a Lagrangian and a p-form

Miroslav Doupovec, Jan Kurek, Włodzimierz Mikulski

Abstract


Let \(\mathcal{FM}_{m,n}\) denote the category of fibered manifolds with \(m\)-dimensional bases and \(n\)-dimensional fibres and their fibered local diffeomorphisms. We prove that  if \(m,n\) and \(s\) are positive integers, then any \(\mathcal{FM}_{m,n}\)-natural operator \(C\) transforming tuples \((\lambda_1,\lambda_2)\) of Lagrangians \(\lambda_1,\lambda_2:J^sY\to\bigwedge ^mT^*M\) on \(\mathcal{FM}_{m,n}\)-objects \(Y\to M\) into Legendre maps \(C(\lambda_1,\lambda_2):J^{s}Y\to S^sTM\otimes V^*Y\otimes\bigwedge^m T^*M\) on \(Y\) is of the form \(C(\lambda_1,\lambda_2)=c_1\Lambda(\lambda_1)+c_2\Lambda(\lambda_2)\), \(c_1,c_2\in\mathbf{R}\), where \(\Lambda\) is the Legendre operator. We also prove that if \(m,n,s\) and \(p\) are  positive integers, then any \(\mathcal{FM}_{m,n}\)-natural operator \(C\) transforming tuples \((\lambda,\eta)\) of Lagrangians \(\lambda:J^sY\to\bigwedge ^mT^*M\) and \(p\)-forms \(\eta\in \Omega^p(M)\) into Legendre maps \(C(\lambda,\eta):J^{s}Y\to S^sTM\otimes V^*Y\otimes\bigwedge^m T^*M\) is of the form \(C(\lambda,\eta)=c\Lambda(\lambda)\), \(c\in\mathbf{R}\), where \(\Lambda\) is the Legendre operator.

Keywords


Fibered manifolds; Lagrangian; Legendre map; natural operator; Legendre operator

Full Text:

PDF

References


Doupovec, M., Kurek, J., Mikulski, W. M., The Legendre-like operators on tuples of Lagrangians and functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 79(1) (2025), 1–12.

Kolar, I., A geometrical version of the higher order Hamiltonian formalism in fibered manifolds, J. Geom. Phys. 1 (1984), 127–137.

Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin–Heidelberg, 1993.

Kurek, J., Mikulski, W. M., The Euler-like operators on tuples of Lagrangians and functions on bases, Ann. Univ. Mariae Curie-Skłodowska Sect. A 73 (2024), 75–86.

Mikulski, W. M., On regular local operators on smooth maps, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62(2) (2015), 69–72.

Mikulski, W M., On nnaturality of the Legendre operator, Demonstr. Math 41(4) (2008), 969–973.




DOI: http://dx.doi.org/10.17951/a.2025.79.1.13-23
Date of publication: 2025-07-31 20:53:31
Date of submission: 2025-07-23 19:49:47


Statistics


Total abstract view - 0
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Miroslav Doupovec, Jan Kurek, Włodzimierz Mikulski