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ABSTRACT 

This study investigates the effect of biological and environmental inter-individual variability 
on the meaning of δ18O and δ13C values acquired on small carbonated shells. First we present 
data obtained with a MultiPrep automated carbonate system on small sample sizes of 
a homogeneous carbonate material: Carrara marble. This demonstrates the capacities of the 
analytical system to reliably run small amounts of carbonates even down to 10 µg. Then we 
present two data sets obtained on real fossil samples of various size (sensu number of 
individual organisms) calibrated against the NBS19 carbonate standard. Both datasets 
evidence a clear trend of between-biological sample standard deviation increase for both 
δ18O and δ13C measurements when the number of pooled specimens per sample decreases. 
According to the results obtained from a systematic study of a geologically homogeneous 
sample of coeval fossil Elphidium foraminifera, we estimate that there is 95% of chances to 
reach between-biological sample standard deviation values higher than 1.02‰ (δ18O) and 
1.45‰ δ13C) based on single-cell measurements. Such values are one order of magnitude 
higher than the instrumental standard deviations associated with these stable isotope ratios. 
Conversely, a minimum of 35 (δ18O) and 44 (δ13C) pooled specimens of Elphidium appears 
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necessary to reach a between-sample standard deviation ≤ 0.25‰ with a probability of 95%. 
Such biological intrinsic and irreducible variability between coeval individuals, and thus 
samples, clearly questions the interest for single-cell analyses, more precisely, for coastal 
marine species, such as Elphidium, subject to many environmental changes during their life-
time. Indeed, strong variations in salinity or temperature, as well as biogenic fractionation, 
could influence the isotopic composition of an individual specimen. Results might be less 
problematic for an average community including several tests. This paper underlines 
uncertainties linked to specific environments in which selected organisms live, especially for 
paleoceanographic or paleoclimatic reconstruction purposes where secular oxygen and 
carbon isotope variations typically range from 0.5 to 1.5‰. 
 
Keywords: stable isotope, foraminifera, ostracod, heterogeneity, single shell analysis 

1. INTRODUCTION 

Stable oxygen isotope measurements of carbonated fossil shells were the 
pioneering studies for determining the temperatures of past seawater (Urey, 1947; 
McCrea, 1950; Epstein et al., 1953). Many carbonate–secreting marine organisms 
are confined to marine platform settings. Such environments are highly influenced 
by continental runoff and coastal oceanic currents ultimately affecting, e.g., the 
depth gradients of temperature and salinity, and photocline and nutricline depths. 
Coccoliths constitute a large fraction of the oceanic nannoplankton since the Early 
Jurassic but their very small size (a few µm) still makes difficult the isotopic 
analysis of fossils at the species, or at least at the genus level (but see, e.g., Stoll and 
Ziveri, 2002; Stoll and Shimizu, 2009; Fink et al., 2010). Foraminifera are also 
unicellular organisms which size classically ranges from 40 µm up to ~1 mm; they 
appeared during the early Paleozoic but benthic and planktonic forms invaded the 
deep and surface oceans since the Cretaceous (Roth, 1989). The carbon and oxygen 
isotope compositions of their shells have been widely used to reconstruct marine 
paleoproductivity and paleotemperatures. For example, Shackleton (1967; 1986), 
Shackleton and Opdyke (1973) and Shackleton et al. (1983) revealed the existence 
of a first-order long-term cooling of Earth's surface since the Paleocene as well as 
the periodicity of the Quaternary glacial-interglacial stages. Huber et al. (1995; 
2002), Schmidt and Mysak (1996) and Jenkyns et al. (2004) showed that the 
Cretaceous oceans about 100 My ago were much warmer than today, especially at 
high latitudes in the absence of permanent polar ice caps. The occurrence of 
foraminifera above and below the thermocline as well as from low to high latitudes 
led many researchers to use their stable isotope compositions, combined to Mg/Ca 
ratios, as proxies for both thermal structure of the oceans and volume of freshwater 
ice stored on the continents (e.g. Billups and Schrag, 2003; Lea et al., 2006 ). 

For these large scales, in space (open ocean) and time (several hundred years 
resolution), measurements made on several species of the same aliquot seem to 
reflect the general (regional) conditions, within acceptable uncertainties for natural 
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environmental changes (van Sebille et al., 2014). The question of robustness and 
significance of the isotopic analysis is raised for a small amount of foraminifera, 
taken in specific areas (such as coastal areas) undertaking strong environmental 
variations. 

In the past two decades, increase in the sensitivity of dual-inlet isotope ratio 
mass spectrometers and their coupling to automated on-line preparation devices 
allowed the analysis of very small amounts of calcium carbonate, down to the  
5–10 µg level. This instrumental improvement opened the field of analysis of single 
carbonate-secreting unicellular organisms such as foraminifera with weights ranging 
from a few tenths to hundreds micrograms for most of them. Consequently, many 
workers established carbon and oxygen isotope seawater curves based on such single 
shell analysis techniques (e.g. Kelly et al., 1996; Price et al., 1998; Zachos et al., 
2007). Nevertheless, inter-individual isotopic variability for both C and O has 
already been documented (Shuxi and Shackleton, 1990; Billups and Spero, 1995; 
Saraswati, 2004) and cannot be reduced only to analytical and instrumental 
accuracy. However, no convincing demonstration was made so far for identifying 
the environmental (temperature, δ18O of water, productivity and δ13C of DIC) and 
biological (physiology and phylogeny) drivers responsible for such isotopic 
differences between analyzed specimens. The knowledge of the amplitude of the 
inter-individual oxygen isotope variability is critical considering that most short- and 
long-term changes in the mean annual or seasonal temperature of surface waters that 
did not exceed 5°C against up to 15°C for deep waters during the Phanerozoic (e.g. 
Shackleton, 1986; Zachos et al., 2001; 2003; Pucéat et al., 2003; Joachimski et al., 
2009). Indeed, the slope of the oxygen isotope fractionation equation between 
calcium carbonate and water is slightly higher than 4, hence corresponding to the 
temperature amplitude recorded by 1‰ change in the δ18O value of any aquatic 
carbonated shell. On the other hand, short-term changes in productivity as well as 
long-term variations in oxidation or burial of sedimentary organic matter typically 
produce variations of ±3‰ in the carbon isotope composition of seawater 
(Schidlowski, 1987). 

Consequently, the aim of this study is to explore the amplitude of both carbon 
and oxygen isotopic variability as a function of sample size (i.e., number of 
individual shells pooled in a sample). Selected targets were benthic foraminifera 
(Elphidium and Ammonia) and ostracods (Aurila) since they have been used for 
some paleoenvironmental reconstructions of aquatic environments (Holmes, 1996; 
Bauch et al., 2004). We are conscious that these species are not the most 
representative of large scale (in space and time) environmental reconstructions in 
paleoceanography. Although, as they are coastal species, strong environmental 
parameter changes are expected, and therefore, isotopic measurements performed on 
individual specimens could reflect strong range of variations.  
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2.  MATERIAL AND METHODS 

2.1. SAMPLE ORIGIN 

The studied fossil samples come from the Sarmatian (Middle Miocene, 12.8-11.5 
Ma) deposits of three boreholes (Perbál-5, Mány-17 and Mány-22) in the Zsámbék 
Basin, Hungary, which is located in the central part of the Pannonian Basin (Fig. 1 and 
2). The lithology of the Sarmatian deposits is heterogeneous: clays, clay marls, 
calcareous marls, sandstones and limestones. The Sarmatian sequences are underlain 
by Badenian strata and overlain by Pannonian or Pleistocene sediments. 

 

 
Figure 1: Geographical location of the studied fossils that were sampled from the Sarmatian 
(Middle Miocene, 12.8–11.5 Ma) deposits of three boreholes (Perbál-5, Mány-17 and Mány-
22) in the Zsámbék Basin, Hungary. 

 
Figure 2: Lithostratigraphic Sarmatian successions in the three boreholes and location of 
foraminifera and ostracod samples. 
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For the analyses, very well preserved calcitic shells of foraminifera (Elphidium 
aculeatum, E. macellum and Ammonia beccarii) and ostracods (Aurila mehesi and A. 
notata) were selected (Fig. 3; see Görög (1992) and Tóth (2008) for detailed 
systematic descriptions of the studied species). The fossil shells are derived from 
102 layers of the boreholes (Fig. 2, Appendix A). Additional specimens from four 
marly beds (Fig. 2, Appendix B) were collected for the systematic isotopic 
measurements. 

 

 
Figure 3: Foraminifera and ostracod species selected for stable carbon and oxygen isotope 
measurements. Scale bar=100 μm 
(a) Ammonia beccarii (Linné). Dorsal side. Mány-22 borehole, depth 45-52.5 m. 
(b) Ammonia beccarii (Linné). Ventral side. . Mány-22 borehole, depth 45-52.5 m. 
(c) Elphidium aculeatum (d'Orbigny). Side view. Mány-17 borehole, depth 152.8-153 m. 
(d) Elphidium macellum (Fichtel & Moll). Side view. Mány-22 borehole, depth 170-173 m. 
(e) Elphidium macellum (Fichtel & Moll). Apertural view. Mány-22 borehole, depth 170-173 m. 
(f) Aurila mehesi (Zalányi). RV. Mány-17 borehole, depth 168.7-171.2 m. 
(g) Aurila mehesi (Zalányi). LV. Mány-17 borehole, depth 168.7-171.2 m. 
(h) Aurila notata (Reuss). RV. Mány-22 borehole, depth 45-52.5 m. 
(i) Aurila notata (Reuss). LV. Mány-22 borehole, depth 45-52.5 m. 
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2.2. SAMPLE TREATMENT 

For each core sample and both C and O investigations, about 100 g of air-dried 
sediment was soaked in a dilute solution of hydrogen peroxide and then washed over 
a column of sieves of diminishing mesh sizes to extract the carbonated shells 
(foraminifera and ostracods). Then the shells were cleaned three times with 
deionized water in an ultrasonic bath to remove the sedimentary matrix, and finally 
hand-picked under a stereomicroscope. In all samples, the calcitic shells of 
foraminifera and ostracods preserved their original crystal structure as it was 
evidenced by X-ray diffraction data (Tóth et al., 2010), therefore precluding any 
diagenetic alteration of the pristine carbon and oxygen isotope compositions of the 
studied fossils. 

2.3. ISOTOPE RATIO MEASUREMENT 

Carbon and oxygen isotope ratio measurements have been performed with 
a MultiPrep system on line with a dual Inlet IsoPrime™ Isotope Ratio Mass 
Spectrometer (IRMS). The principle of the fully automated device is to react the 
calcium carbonates with anhydrous phosphoric acid at 90°C to generate CO2 
according to the following acid–base reaction: 

 CaCO3 + H3PO4  CaHPO4 + CO2 + H2O.  

Each sample was carefully ground into a powder with grain sizes around 
200 µm. Then the sample aliquot (typically 200 – 300 µg) was placed at the bottom 
of a V shape vial that was then sealed with a rubber septum. The sample vials were 
then placed in a temperature regulated sample tray heated at 90°C. From this stage 
all the sample preparation is done automatically. The MultiPrep system is equipped 
with a double hole needle which allows the acid to be delivered in the vial and also 
to extract the CO2 which has been generated during the reaction. First the vial is 
evacuated through the external needle connected to the MultiPrep vacuum system. 
Then phosphoric acid is admitted in the vial through the inner needle using the acid 
pump. At this stage the reaction starts and CO2 is generated. The reaction time is 
20 min and during all this time the needle remains inside the valve. The external 
cold finger is maintained at -165°C and the valve arrangement allows the CO2 
generated from the reaction to be constantly extracted and trapped in the external 
cold finger. Once the reaction is completed the external cold finger is heated at -
70°C to release the CO2 without releasing water. The CO2 pressure is read with a 
transducer located on the sample side of the IRMS Dual Inlet and from this pressure 
reading the sample analysis strategy is decided. If the sample is big enough it will be 
loaded in the dual inlet sample bellow and analyzed. If the sample is too small, it 
will be trapped in the Dual Inlet cold finger and analyzed. 
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3. RESULTS  

3.1. BACKGROUND INSTRUMENTAL UNCERTAINTY 

Determination of the instrumental noise is a prerequisite to any quantification of 
the carbon and oxygen isotopic variability between biological samples as a function 
of the number of analyzed individuals per sample. Therefore three sets of 
measurements have been performed on the international standard NBS–19 and an 
internal standard (Carrara Marble). Both were routinely measured on a daily basis 
over 2 months. Instrumental standard deviations associated with δ18O and δ13C 
measurements of “large” aliquots (~300 µg) of both NBS–19 and Carrara marble are 
of 0.062‰ and 0.022‰ (NBS–19, n=49) (Table 1; Figure 4), and of 0.069‰ and 
0.036‰ (Carrara marble, n=30) (Table 2; Figure 5), respectively. These comparable 
results allow concluding that both calcium carbonate matrices have the same degree 
of isotopic homogeneity, and that the Carrara marble can be consequently used 
instead of NBS–19 in order to evaluate the standard deviations associated with 
measurements of natural samples of varying size. 

TABLE 1: Carbon and oxygen isotope compositions of NBS19 aliquots over a period of six 
months. Sample weights vary from 280 to 390 µg. N.a.: not applicable (in case where only 
one measurement was performed).  

NBS-19-# δ13C ‰ V–PDB S.D. δ 18O ‰ V–PDB S.D. 
NBS19-1 1.93 0.004 -2.33 0.011 
NBS19-2 1.96 0.026 -2.16 0.185 
NBS19-3 1.96 0.081 -2.16 0.239 
NBS19-4 1.94 0.024 -2.26 0.100 
NBS19-5 1.94 0.027 -2.15 0.222 
NBS19-6 1.96 0.023 -2.23 0.041 
NBS19-7 1.92 n.a. -2.27 n.a. 
NBS19-8 1.98 0.042 -2.14 0.092 
NBS19-9 1.93 0.016 -2.22 0.058 

NBS19-10 1.96 0.017 -2.15 0.094 
NBS19-11 1.93 0.007 -2.30 0.027 
NBS19-12 1.95 0.022 -2.23 0.050 
NBS19-13 1.97 n.a. -2.17 n.a. 
NBS19-14 1.98 0.011 -2.12 0.013 
NBS19-15 1.91 0.006 -2.18 0.131 
NBS19-16 1.93 n.a. -2.29 n.a. 
NBS19-17 1.98 0.032 -2.12 0.125 
NBS19-18 1.96 0.058 -2.22 0.081 
NBS19-19 1.94 0.027 -2.17 0.134 
NBS19-20 1.93 0.003 -2.33 0.017 
NBS19-21 1.96 0.027 -2.15 0.068 
NBS19-22 1.96 0.000 -2.12 0.046 
NBS19-23 1.94 0.011 -2.24 0.019 
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Ctnd. TAB. 1. 
NBS19-24 1.96 0.023 -2.16 0.047 
NBS19-25 1.94 0.041 -2.26 0.132 
NBS19-26 1.93 0.023 -2.24 0.055 
NBS19-27 1.98 0.007 -2.11 0.002 
NBS19-28 1.93 0.055 -2.21 0.194 
NBS19-29 1.94 0.010 -2.26 0.021 
NBS19-30 1.97 0.021 -2.14 0.038 
NBS19-31 1.95 0.010 -2.20 0.005 
NBS19-32 1.95 0.007 -2.20 0.006 
NBS19-33 1.95 n.a. -2.20 n.a. 
NBS19-34 2.00 0.057 -2.31 0.139 
NBS19-35 1.90 0.034 -2.08 0.154 
NBS19-36 1.97 0.028 -2.21 0.107 
NBS19-37 1.95 0.031 -2.22 0.041 
NBS19-38 1.98 0.001 -2.16 0.034 
NBS19-39 1.97 0.047 -2.15 0.212 
NBS19-40 1.96 0.005 -2.20 0.039 
NBS19-41 1.90 0.044 -2.28 0.101 
NBS19-42 1.95 0.021 -2.20 0.063 
NBS19-43 1.95 0.028 -2.20 0.121 
NBS19-44 1.95 0.010 -2.20 0.087 
NBS19-45 1.97 0.036 -2.25 0.087 
NBS19-46 1.96 0.022 -2.16 0.094 
NBS19-47 1.93 0.038 -2.17 0.124 
NBS19-48 1.98 0.054 -2.11 0.123 
NBS19-49 1.92 0.072 -2.30 0.181 

TABLE 2: Carbon and oxygen isotope compositions of Carrara marble aliquots over 
a period of six months. Sample weights vary from 100 to 350 µg. 

CM-# δ13C ‰ V–PDB S.D. δ18O ‰ V–PDB S.D. 
CM1 1.993 0.044 -1.762 0.061 
CM2 2.029 0.015 -1.962 0.079 
CM3 2.082 0.017 -1.819 0.006 
CM4 2.037 0.023 -1.836 0.051 
CM5 2.054 0.072 -1.758 0.194 
CM6 2.054 0.031 -1.846 0.010 
CM7 1.987 0.023 -1.975 0.068 
CM8 1.963 0.011 -2.056 0.026 
CM9 1.987 0.032 -1.968 0.109 
CM10 1.912 0.083 -2.016 0.180 
CM12 1.944 0.044 -1.796 0.061 
CM13 2.009 0.076 -1.846 0.043 
CM14 1.997 0.080 -1.828 0.029 
CM15 1.995 0.063 -1.917 0.101 
CM16 2.067 0.024 -1.826 0.110 
CM18 1.990 0.063 -1.884 0.114 
CM20 2.043 0.037 -1.880 0.045 
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Ctnd. TAB. 2. 
CM21 1.958 0.061 -1.865 0.088 
CM22 2.032 0.030 -1.833 0.020 
CM23 2.018 0.032 -1.849 0.052 
CM24 2.029 0.052 -1.837 0.058 
CM25 2.019 0.026 -1.848 0.085 
CM26 2.034 0.030 -1.822 0.022 
CM27 2.016 0.026 -1.861 0.021 
CM28 2.028 0.056 -1.830 0.088 
CM29 2.022 0.019 -1.853 0.053 
CM30 2.029 0.024 -1.832 0.066 
CM31 2.020 0.022 -1.852 0.044 
CM32 2.028 0.025 -1.834 0.033 
CM33 2.021 0.010 -1.851 0.027 

 

 

 
Figure 4: Evolution of δ13C and δ18O values of NBS 19 reference calcite over a period of six 
months. Sample sizes vary from 280 to 390 µg. 
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Figure 5: Evolution of δ13C and δ18O values of Carrara marble over a period of six months. 
Sample sizes vary from 100 to 350 µg. 

Consequently, δ18O and δ13C standard deviations corresponding to the 
background instrumental noise have been further estimated for a series of Carrara 
marble aliquots of varying weight from 10 to 380 µg; the 29 performed 
measurements reveal that average instrumental standard deviations associated with 
δ18O and δ13C are of 0.133‰ and 0.057‰, respectively (Table 3; Figure 6). It is 
worth noting here that the average instrumental standard deviations estimated for 
aliquots ranging from 10 to 60 µg (0.155‰ for δ18O, and 0.067‰ for δ13C) were 
larger than those obtained for aliquots ranging from 110 to 380 µg (0.093‰ for δ18O 
and 0.035‰ for δ13C), illustrating the expected increase in instrumental uncertainty 
with decreasing quantity of analyzed material (Fig. 6). 
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TABLE 3: Carbon and oxygen isotope compositions of Carrara marble aliquots which 
sample sizes range from 10 to 380 µg. 

Sample Name Weight (µg) δ13C ‰ V–PDB δ18O ‰ V–PDB 
CM8 10 1.99 -1.90 
CM15 10 2.07 -1.59 
CM22 10 2.10 -1.58 
CM23 10 1.99 -1.68 
CM27 10 1.99 -1.64 
CM28 10 1.91 -1.80 
CM29 10 1.98 -1.56 
CM7 30 1.90 -2.03 
CM24 30 1.95 -1.76 
CM25 40 2.07 -1.65 
CM26 60 1.92 -1.88 
CM4 110 2.04 -1.85 
CM5 110 2.05 -1.80 
CM14 110 2.05 -1.78 
CM19 140 2.02 -1.85 
CM20 140 1.98 -1.99 
CM21 150 2.02 -1.93 
CM6 160 2.07 -1.69 
CM13 170 2.05 -1.86 
CM12 180 2.01 -1.87 
CM3 210 2.04 -1.96 
CM2 260 2.03 -2.04 
CM10 270 2.10 -1.82 
CM11 270 2.08 -1.81 
CM16 280 2.12 -1.71 
CM17 280 2.05 -1.86 
CM1 290 2.01 -1.99 
CM9 290 2.06 -1.83 
CM18 380 2.09 -1.84 
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Figure 6: Variations in δ13C and δ18O values as a function of sample weights (10 to 380 µg) 
of Carrara marble. 

3.2. INTER-INDIVIDUAL BIOLOGICAL VARIABILITY 

Taking into account this background instrumental uncertainty, the following 
hypothesis was tested with natural microfossil samples of foraminifera (Elphidium; 
n=51 and Ammonia; n=16) and ostracods (Aurila; n=34): for a given sample weight, the 
between-biological sample isotopic variability should be independent on the number of 
individuals pooled in each analyzed sample. Table 4 and Figure 7 show that between-
biological sample standard deviations related to δ18O and δ13C average empirical values 
increase up to 0.7‰ (δ18O) and 0.85‰ (δ13C) with the number of individuals 
decreasing; most values being larger than the background instrumental standard 
deviations. Data were non-linearly least–square fitted with a power law, assuming that 
the standard deviation tends towards infinite values when the number of individuals per 
sample tends towards zero, whilst it should tend towards the background instrumental 
noise, i.e. the standard deviation defined by either large samples of NBS–19 or Carrara 
marble, when the number of individuals per sample becomes very large. 

TABLE 4: Carbon and oxygen isotope compositions of Sarmatian foraminifera (Elphidium, 
Ammonia) and ostracod (Aurila) samples. Standard deviations were calculated from two 
replicates of each sample. 

Sample # Species Weight 
(µg) 

Individual
s (n) 

Mean δ13C  
‰ V–PDB S.D. Mean δ18O  

‰ V–PDB S.D. 

PB-5-1 Elphidium 
aculeatum 300 10 -1.00 0.078 -1.07 0.018 

PB-5-4 Elphidium 
macellum 300 15 -0.98 0.055 -1.69 0.108 

PB-5-5 Elphidium 
macellum 290 14 0.39 0.252 -1.25 0.147 

PB-5-7 Elphidium 
aculeatum 300 9 0.73 0.111 0.25 0.160 
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ctnd. TAB. 4. 

PB-5-8 Elphidium 
macellum 310 12 0.04 0.102 0.20 0.182 

PB-5-17 Elphidium 
macellum 310 15 0.55 0.004 -0.52 0.150 

PB-5-20 Elphidium 
macellum 300 8 0.77 0.111 -2.93 0.164 

PB-5-21 Elphidium 
macellum 310 5 0.91 0.443 -2.53 0.005 

PB-5-23 Elphidium 
macellum 310 14 1.10 0.069 -2.93 0.217 

PB-5-25 Elphidium 
macellum 310 14 1.29 0.055 -2.35 0.038 

PB-5-26 Elphidium 
macellum 310 6 0.55 0.260 -2.30 0.036 

PB-5-28 Elphidium 
aculeatum 320 13 0.58 0.096 -2.34 0.083 

PB-5-29 Elphidium 
macellum 310 7 1.54 0.040 -2.13 0.081 

PB-5-33 Elphidium 
macellum 300 9 1.50 0.079 -1.68 0.287 

PB-5-34 Elphidium 
aculeatum 310 5 1.80 0.040 -0.45 0.025 

PB-5-36 Elphidium 
macellum 300 12 1.82 0.005 -1.73 0.137 

PB-5-38 Elphidium 
aculeatum 310 16 0.48 0.073 -0.13 0.170 

PB-5-46 Elphidium 
hauerinum 280 41 -0.16 0.021 -0.77 0.061 

PB-5-47 Elphidium 
macellum 310 26 -0.69 n.a. -1.92 0.021 

PB-5-48 Elphidium 
macellum 280 35 -0.55 0.064 -1.87 0.031 

PB-5-50 Elphidium 
macellum 310 18 -0.62 0.082 -2.58 0.102 

PB-5-51 Elphidium 
macellum 300 25 -0.36 0.107 -1.59 0.197 

PB-5-53 Elphidium 
macellum 300 26 0.13 0.123 -1.35 0.010 

PB-5-54 Elphidium 
macellum 300 24 0.88 0.060 -1.62 0.184 

PB-5-57 Elphidium 
macellum 290 33 -0.20 0.004 -0.53 0.116 

M-17-2 Elphidium 
macellum 310 21 0.75 0.027 -2.47 0.137 

M-17-4 Elphidium 
macellum 310 17 0.59 0.322 -1.00 0.052 

M-17-6 Elphidium 
aculeatum 330 7 1.35 0.140 -1.43 0.125 

M-17-8 Elphidium 
aculeatum 310 10 2.45 0.429 -1.00 0.122 
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ctnd. TAB. 4. 

M-17-11 Elphidium 
macellum 320 18 1.53 0.072 -1.09 0.108 

M-17-13 Elphidium 
aculeatum 330 14 1.13 0.134 -0.59 0.178 

M-17-14 Elphidium 
aculeatum 330 13 0.88 0.043 -0.73 0.394 

M-17-16 Elphidium 
macellum 310 46 -0.08 0.029 -1.09 0.091 

M-17-18 Elphidium 
macellum 310 21 1.38 0.263 -1.52 0.029 

M-17-20 Elphidium 
macellum 310 12 -0.37 0.296 -1.20 0.136 

M-17-22 Elphidium 
macellum 300 14 0.27 0.097 -2.22 0.037 

M-17-24 Elphidium 
macellum 290 16 -0.59 0.027 -1.32 0.042 

M-17-25 Elphidium 
macellum 320 27 -0.09 0.005 -2.24 0.277 

M-17-26 Elphidium 
macellum 320 21 -0.40 0.039 -1.70 0.191 

M-17-29 Elphidium 
macellum 320 10 1.08 0.034 -1.46 0.139 

M-17-30 Elphidium 
macellum 290 27 0.38 0.043 -0.84 0.080 

M-17-31 Elphidium 
aculeatum 300 21 -0.12 0.073 -1.13 0.068 

M-17-32 Elphidium 
macellum 300 21 0.98 0.101 -1.48 0.147 

M-17-34 Elphidium 
macellum 310 17 1.30 0.475 -3.21 0.090 

M-17-36 Elphidium 
macellum 300 8 1.86 0.092 -2.83 0.070 

M-17-37 Elphidium 
macellum 310 14 -0.98 0.145 -1.18 0.032 

M-17-38 Elphidium 
macellum 290 11 1.92 0.006 -1.19 0.124 

M-17-40 Elphidium 
macellum 290 13 0.58 0.210 -2.28 0.423 

M-17-42 Elphidium 
macellum 310 10 1.04 0.316 -2.52 0.055 

M-17-44 Elphidium 
macellum 310 13 1.11 0.229 -2.18 0.066 

M-17-46 Elphidium 
macellum 320 28 0.49 0.348 -1.74 0.689 

PB-5-6 Ammonia 
becarii 240 35 -0.72 0.167 -2.15 0.178 

PB-5-11 Ammonia 
becarii 210 25 -0.09 0.003 -1.08 0.183 

PB-5-13 Ammonia 
becarii 350 14 0.65 0.003 -2.49 0.190 



 CARBON AND OXYGEN ISOTOPE VARIABILITY AMONG FORAMINIFERA... 147 

 

ctnd. TAB. 4. 

PB-5-16 Ammonia 
becarii 320 1 0.36 0.099 -2.20 0.293 

PB-5-31 Ammonia 
becarii 310 19 0.91 0.062 -2.90 0.108 

PB-5-37 Ammonia 
becarii 290 25 0.67 0.072 -1.98 0.077 

PB-5-42 Ammonia 
becarii 300 28 -0.13 0.071 -2.77 0.201 

PB-5-43 Ammonia 
becarii 290 36 -0.33 0.084 -2.15 0.081 

PB-5-44 Ammonia 
becarii 300 41 0.93 0.089 -2.05 0.115 

PB-5-45 Ammonia 
becarii 300 44 -0.84 0.100 -1.09 0.051 

PB-5-49 Ammonia 
becarii 310 52 -0.94 0.010 -2.46 0.012 

PB-5-55 Ammonia 
becarii 300 15 1.14 0.085 -2.46 0.037 

M-17-7 Ammonia 
becarii 300 11 1.09 0.034 -2.66 0.169 

M-17-10 Ammonia 
becarii 320 33 0.51 0.118 -0.99 0.003 

M-17-12 Ammonia 
becarii 330 23 0.91 0.046 -2.09 0.534 

M-17-21 Ammonia 
becarii 310 35 0.47 0.271 -1.91 0.040 

PB-5-2 Aurila 
mehesi 300 5 -2.86 0.127 -0.58 0.170 

PB-5-3 Aurila 
notata 300 5 -5.13 0.741 -0.68 0.274 

PB-5-9 Aurila 
notata 280 3 -6.01 0.327 -0.22 0.039 

PB-5-10 Aurila 
notata 310 9 -6.11 0.090 -0.53 0.102 

PB-5-12 Aurila 
notata 300 8 -3.29 0.156 -1.48 0.106 

PB-5-15 Aurila 
notata 300 9 -4.87 0.296 -0.56 0.260 

PB-5-18 Aurila 
mehesi 300 10 -4.24 0.293 -1.14 0.228 

PB-5-19 Aurila 
mehesi 310 8 -2.76 0.323 -2.65 0.306 

PB-5-22 Aurila 
mehesi 320 7 -2.45 0.085 -1.81 0.031 

PB-5-24 Aurila 
mehesi 310 4 -0.50 0.009 -2.23 0.236 

PB-5-27 Aurila 
mehesi 330 6 -2.37 0.388 -2.21 0.174 

PB-5-30 Aurila 
mehesi 300 7 -2.23 0.217 -2.63 0.006 
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ctnd. TAB. 4. 

PB-5-32 Aurila 
mehesi 300 11 -1.93 0.113 -0.89 0.161 

PB-5-35 Aurila 
notata 300 9 -1.79 0.113 -2.58 0.154 

PB-5-39 Aurila 
notata 310 14 -5.21 0.073 -1.44 0.426 

PB-5-40 Aurila 
notata 300 8 -4.36 0.028 -0.70 0.528 

PB-5-41 Aurila 
notata 320 9 -3.84 0.053 -1.42 0.152 

PB-5-52 Aurila 
notata 310 8 -3.57 0.180 -1.52 0.237 

PB-5-56 Aurila 
notata 320 9 -3.39 0.439 -2.44 0.152 

M-17-1 Aurila 
mehesi 290 10 -2.75 0.285 -1.82 0.031 

M-17-3 Aurila 
mehesi 330 8 -2.65 0.082 -2.23 0.220 

M-17-5 Aurila 
mehesi 320 8 -2.96 0.227 -1.27 0.304 

M-17-9 Aurila 
mehesi 300 16 -2.91 0.300 -0.85 0.181 

M-17-15 Aurila 
notata 290 14 -1.71 0.014 -1.79 0.127 

M-17-17 Aurila 
notata 300 4 -4.97 0.447 -0.40 0.009 

M-17-19 Aurila 
notata 300 4 -4.11 0.308 -0.43 0.004 

M-17-23 Aurila 
notata 300 9 -5.03 0.020 -0.57 0.169 

M-17-27 Aurila 
notata 310 8 -3.55 0.356 -1.45 0.083 

M-17-28 Aurila 
notata 300 15 -3.38 0.040 -2.11 0.295 

M-17-33 Aurila 
notata 320 17 -4.20 0.428 -1.81 0.100 

M-17-39 Aurila 
notata 320 6 -3.61 0.221 -2.31 0.314 

M-17-41 Aurila 
notata 330 9 -3.14 0.164 -2.70 0.070 

M-17-43 Aurila 
notata 310 12 -4.20 0.099 -1.25 0.012 

M-17-45 Aurila 
notata 300 10 -3.19 0.849 -2.03 0.203 
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Figure 7: Variations in standard deviations of carbon and oxygen isotope measurements as 
a function of the number of individuals considering all three genera of foraminifera and 
ostracods from various levels in Sarmatian boreholes of Hungary (Fig. 2). 

The quality of the fit being so weak when considering all three genera from 
various sample levels simultaneously (due to inter-sample and between-taxon 
isotopic differences), this approach was restricted to a taxonomically homogeneous 
pool of Elphidium foraminifera extracted from the same, Elphidium-rich sample 
level from the Mány-17 borehole (Fig. 2), from which sub-samples composed of 5, 
10, 20, 30 and 40 individual shells (corresponding to samples from 50 to 900 µg) 
were generated by randomly picking-up the fossils under a stereomicroscope. 
Single-cell samples were not considered here due to their very small weight (average 
individual shell weight: 16.5 ± 3.8 µg), involving relatively high associated 
instrumental uncertainty when compared to the 5 to 40-cell samples, and thus 
biasing upward the estimate of inter-biological sample variability effects. For each 
sub-sample size, four distinct sub-samples have been made, allowing the 
computation of a between-biological sample standard deviation (Table 5). Figure 8 
shows that this standard deviation increases with the number of individuals 
decreasing according to the following power laws (including an additive constant 
which corresponds to the background instrumental standard deviation – a value 
reached asymptotically when analyzing an “infinite” pool of individuals): 

SD of δ
18

O = 0.133 + 34.268 N-2.485, R2 = 0.83 (p = 8.9·10-2) 

SD of δ
13

C = 0.057 + 2.748 N-0.829, R2 = 0.92 (p = 9.8·10-3), 

where N is the number of individuals in the sample. According to the prediction 
confidence interval belts associated to these equations, there is a probability of 95% 
(lower bound of the 90% C.I. belt) to obtain between-biological sample standard 
deviations higher than 1.02‰ and 1.45‰ for different δ18O and δ13C measurements 
of single specimens of Elphidium, respectively. Such predicted inter-individual 
variability is about one order of magnitude higher than the background instrumental 
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uncertainty, indicating that a significant amount of variability of eco-physiological 
origin is added when considering biological organisms such as foraminifera. 

TABLE 5: Variations in carbon and oxygen isotope compositions of randomly generated 
sub–samples of Sarmatian Elphidium from a homogeneous pool of Elphidium macellum 
foraminifera extracted from the same level of Mány-17 borehole, Hungary as reported in 
Figure 2. 

Sample # Individuals 
(n) 

Weight 
(µg) 

δ13C 
‰ V–PDB 

δ18O 
‰ V–PDB 

Elphi M17_1 5 60 0.18 -2.11 
Elphi M17_2 5 50 -0.66 -1.52 
Elphi M17_3 5 50 -0.55 -1.93 
Elphi M17_4 5 60 -1.72 -2.83 
Elphi M17_5 10 130 0.33 -1.43 
Elphi M17_6 10 140 -0.62 -1.75 
Elphi M17_7 10 140 -0.21 -1.63 
Elphi M17_8 10 160 -0.26 -1.66 
Elphi M17_9 20 380 0.30 -1.69 

Elphi M17_10 20 330 0.02 -1.43 
Elphi M17_11 20 350 -0.50 -1.68 
Elphi M17_12 20 330 -0.15 -1.88 
Elphi M17_13 30 570 -0.11 -1.43 
Elphi M17_14 30 540 0.27 -1.55 
Elphi M17_15 30 610 -0.12 -1.79 
Elphi M17_16 30 610 -0.33 -1.61 
Elphi M17_17 40 710 -0.26 -1.47 
Elphi M17_18 40 850 -0.34 -1.64 
Elphi M17_19 40 790 -0.51 -1.74 
Elphi M17_20 40 900 -0.13 -1.73 

 

 
Figure 8: Variations in standard deviations of carbon and oxygen isotope measurements as 
a function of the number of individuals from the same pool of Elphidium foraminifera from 
the Mány-17 borehole (Fig. 2). 
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4. DISCUSSION 

Isotopic studies of carbonated skeletons cannot escape the question of a possible 
diagenetic alteration that may potentially modify their pristine compositions. 
Selected foraminifera and ostracod samples from the Miocene deposits of Hungary 
have been already evaluated for their state of preservation as attested by the quality 
of their ultrastructure imaged by SEM techniques (Tóth et al., 2010). However, no 
definitive criterion is available in order to discard unambiguously alteration 
processes responsible for sizable changes in the post-depositional compositions of 
carbonated fossils. Nevertheless, on the basis of mass balance considerations, one 
can expect two isotopic patterns of water–mineral interactions that could operate 
within sedimentary deposits. The first one is the production of homogenized isotopic 
compositions of fossils in response to large volumes of aqueous fluids interacting 
with the hosting sediment; the second one, driven by low water–mineral ratios, 
should produce isotopic heterogeneities without any relation to the sample size (i.e., 
number of sampled individuals). These two scenarios do not match the observed 
distribution of isotopic compositions in studied foraminifera and ostracod shells. 

Carbon and oxygen isotope compositions of the studied carbonated fossil shells 
show unambiguously that empirical between-biological sample variability 
associated with δ18O and δ13C largely exceeds the background instrumental 
uncertainty and clearly relates to inter-individual variability (Fig. 7 and 8). This 
result clearly impacts interpretation of variations in both δ18O and δ13C values of 
marine carbonated microfossils as indicators of change in ambient seawater 
temperature and productivity. 

Indeed, in order to be able to detect subtle variations in seawater temperature 
based on δ18O values, a minimum of 35 pooled specimens of Elphidium is necessary 
to reach a between-sample standard deviation ≤ 0.25‰ with a probability of 95%, 
corresponding to an estimated temperature uncertainty ≤ ±1°C at a 95% confidence 
level (Fig. 8). The analysis of less than 3 pooled individual shells returns standard 
deviation values ≥ 0.25‰ in more than 95% of the sample cases, a value exceeding 
1‰ (corresponding to an actual seawater estimated temperature uncertainty of at 
least ±4°C at a 95% confidence level) when a single specimen of Elphidium is 
analyzed. In such cases of large uncertainty, the detection of thermal events such as 
changes in oceanic circulation or climatic events recorded by coastal waters (whose 
amplitudes rarely exceed 5°C as documented since the Mesozoic; Shackleton, 1986; 
Norris and Röhl, 1999; Lécuyer et al., 2003; Pucéat et al., 2003; Joachimski et al., 
2009) obviously becomes problematic, if not impossible. The oxygen isotope 
composition of benthic foraminifera such as Elphidium has been also extensively 
used as a proxy of variations in the δ18O of seawater as a consequence of changes in 
the continental ice volume. Once again, this threshold of ~1‰ associated with the 
analysis of a single foraminifera shell constitutes a “biological isotopic noise” in the 
same order of magnitude as the variation in the δ18O of the oceans resulting from ice 
cap growth during a glacial stage or a complete melting of existing ice caps during 
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a greenhouse interlude (Shackleton and Kennett, 1975; Billups and Schrag, 2003; 
Pekar and DeConto, 2006. Again, these results challenge the interpretation of the 
δ18O signal for coastal benthic foraminifera only. For the open ocean record, 
including benthic and planktonic isotopic compositions on a regional interval, 
quantitative estimations based on several specimens seem to stay valid, taking into 
account local perturbations such as current strength or origin (Van Sebille et al., 
2015). In addition to this study, the same approach needs to be performed on 
individual benthic or planktonic specimen taken in large scale areas, to investigate 
open-ocean parameter reconstructions. Deeper studies could also test differences 
observed at several depths in the water column, taking into account different sizes 
within a single foraminifera species. 

Concerning carbon isotope measurements, a minimum of 15 and 44 Elphidium 
individuals is required in order to reach between-sample standard deviations ≤ 0.5‰ 
and ≤ 0.25‰, respectively (Fig. 8). The carbon isotope analysis of a single specimen 
generates a standard deviation ≥ 1.45‰ in 95% of the sample cases; such threshold 
is comparable to secular changes in the δ13C values recorded in the marine carbonate 
deposits which are interpreted either as variations in the primary production at time 
scales of about 50,000 yr, or variations in the burial or oxidation rates of 
sedimentary organic matter at time scales of about 1 Myr (e.g. Magaritz et al., 1992; 
Kump and Arthur, 1999). However, this between-sample standard deviation 
predicted for a single specimen analysis in a homogeneous taxonomical and 
environmental/climatic context is significantly lower than some spectacular carbon 
isotope excursions recorded in sediments and which were interpreted as related to 
extreme events such as food chain rupture, volcanic paroxysm and large methane 
release by clathrates (e.g. Röhl et al., 2000; Pálfy et al., 2001; Hesselbo et al., 2002). 

Contrasting with the two relations inferred for δ18O and δ13C, it is worth noting 
that the average observed values of inter-biological sample standard deviation in the 
5–40 specimens and 50–900 µg sample weight ranges are slightly higher for δ13C 
than for δ18O measurements. Actually, based on the instrumental standard deviations 
as evidenced above, one should expect the reverse situation if such inter-biological 
sample standard deviations were the consequence of an instrumental mass 
fractionation (the average instrumental error is ~2.3 times larger for δ18O than for 
δ13C based on 29 Carrara marble aliquots). Indeed, such result clearly points to the 
fact that the inter-biological sample variability evidenced here does originate in an 
inter-individual natural heterogeneity (i.e., biological variability) rather than in an 
instrumental fractionation spurious analytical effect. This result makes sense with 
regard to the specific environmental life style of Elphidium, a coastal species for 
which strong natural variations in salinity and temperature could be expected. 

Inter-individual δ18O and δ13C variations as evidenced here between specimens 
from the same foraminifera genus and fossil level are most likely resulting from eco-
physiological intrinsic differences in metabolism (e.g., individual position within the 
autotrophy-heterotrophy gradient) and environmental conditions (e.g., depth-related 
changes in temperature and luminosity, and composition of dissolved inorganic 
carbon). In addition, such irreducible biological variability could be strongly, but 
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artefactually enhanced by cryptic biological speciation events as increasingly 
evidenced in marine, planktic as well as benthic organisms (Knowlton, 1993; de 
Vargas et al., 1999, 2004; Irigoien et al., 2004; Chen and Hare, 2008; Darling and 
Wade, 2008). An efficient way to further exploring such possibility should be to 
independently perform the kind of analysis leading to Figure 8 on distinct 
morphological species showing contrasted cryptic diversity contexts (the higher the 
cryptic diversity, the steeper the decreasing slope of the number of individuals vs. 
between-sample standard deviation relation). The ongoing effort in developing 
morphometrical recognition models of cryptic species (e.g., Morard et al. 2009) 
should allow solving this problem in the future. Future studies could also investigate 
open ocean foraminifera species, benthic or planktonic, usually used for large-scale 
(in both space and time) paleoceanographic reconstructions. 

5. CONCLUSION 

We have shown in this study that recent automated systems designed for the 
analyses of δ13C and δ18O from carbonate samples are capable of measuring reliably 
small quantities of pure calcite down to 5–10 µg with instrumental standard 
deviations close to 0.1‰. Such analytical accuracy opens up possibilities for the 
analysis of small microfossils like foraminifera, especially for paleoclimate 
reconstruction purposes. Nevertheless, data generated from small numbers of 
specimens (e.g., carbonated shells from single-cell organisms) have to be considered 
with great caution. Indeed, our results show a general trend to increase the between-
biological sample standard deviation for both 13C and 18O measurements when 
decreasing the number of specimen analysed. Based on a systematic study 
performed on a homogeneous pool of Elphidium coastal benthic foraminifera, we 
estimate that there is a probability of 95% to obtain between-biological sample 
standard deviations higher than 1.02‰ and 1.45‰ for δ18O and δ13C measurements 
of various single shells, respectively. 

Such biological intrinsic and irreducible variability observed between coeval 
samples clearly questions the interest for single-cell analyses for environments 
undertaking rapid and strong variations in their physical parameters, such as salinity 
and temperature. For this specific example, paleotemperature estimates should not 
be done on single foraminifera δ18O measurements. 
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	ABSTRACT
	This study investigates the effect of biological and environmental inter-individual variability on the meaning of 18O and 13C values acquired on small carbonated shells. First we present data obtained with a MultiPrep automated carbonate system on small sample sizes of a homogeneous carbonate material: Carrara marble. This demonstrates the capacities of the analytical system to reliably run small amounts of carbonates even down to 10 g. Then we present two data sets obtained on real fossil samples of various size (sensu number of individual organisms) calibrated against the NBS19 carbonate standard. Both datasets evidence a clear trend of between-biological sample standard deviation increase for both 18O and 13C measurements when the number of pooled specimens per sample decreases. According to the results obtained from a systematic study of a geologically homogeneous sample of coeval fossil Elphidium foraminifera, we estimate that there is 95% of chances to reach between-biological sample standard deviation values higher than 1.02‰ (18O) and 1.45‰ 13C) based on single-cell measurements. Such values are one order of magnitude higher than the instrumental standard deviations associated with these stable isotope ratios. Conversely, a minimum of 35 (18O) and 44 (13C) pooled specimens of Elphidium appears necessary to reach a between-sample standard deviation ( 0.25‰ with a probability of 95%. Such biological intrinsic and irreducible variability between coeval individuals, and thus samples, clearly questions the interest for single-cell analyses, more precisely, for coastal marine species, such as Elphidium, subject to many environmental changes during their life-time. Indeed, strong variations in salinity or temperature, as well as biogenic fractionation, could influence the isotopic composition of an individual specimen. Results might be less problematic for an average community including several tests. This paper underlines uncertainties linked to specific environments in which selected organisms live, especially for paleoceanographic or paleoclimatic reconstruction purposes where secular oxygen and carbon isotope variations typically range from 0.5 to 1.5‰.
	Keywords: stable isotope, foraminifera, ostracod, heterogeneity, single shell analysis
	1. INTRODUCTION
	Stable oxygen isotope measurements of carbonated fossil shells were the pioneering studies for determining the temperatures of past seawater (Urey, 1947; McCrea, 1950; Epstein et al., 1953). Many carbonate–secreting marine organisms are confined to marine platform settings. Such environments are highly influenced by continental runoff and coastal oceanic currents ultimately affecting, e.g., the depth gradients of temperature and salinity, and photocline and nutricline depths. Coccoliths constitute a large fraction of the oceanic nannoplankton since the Early Jurassic but their very small size (a few m) still makes difficult the isotopic analysis of fossils at the species, or at least at the genus level (but see, e.g., Stoll and Ziveri, 2002; Stoll and Shimizu, 2009; Fink et al., 2010). Foraminifera are also unicellular organisms which size classically ranges from 40 m up to ~1 mm; they appeared during the early Paleozoic but benthic and planktonic forms invaded the deep and surface oceans since the Cretaceous (Roth, 1989). The carbon and oxygen isotope compositions of their shells have been widely used to reconstruct marine paleoproductivity and paleotemperatures. For example, Shackleton (1967; 1986), Shackleton and Opdyke (1973) and Shackleton et al. (1983) revealed the existence of a first-order long-term cooling of Earth's surface since the Paleocene as well as the periodicity of the Quaternary glacialinterglacial stages. Huber et al. (1995; 2002), Schmidt and Mysak (1996) and Jenkyns et al. (2004) showed that the Cretaceous oceans about 100 My ago were much warmer than today, especially at high latitudes in the absence of permanent polar ice caps. The occurrence of foraminifera above and below the thermocline as well as from low to high latitudes led many researchers to use their stable isotope compositions, combined to Mg/Ca ratios, as proxies for both thermal structure of the oceans and volume of freshwater ice stored on the continents (e.g. Billups and Schrag, 2003; Lea et al., 2006 ).
	For these large scales, in space (open ocean) and time (several hundred years resolution), measurements made on several species of the same aliquot seem to reflect the general (regional) conditions, within acceptable uncertainties for natural environmental changes (van Sebille et al., 2014). The question of robustness and significance of the isotopic analysis is raised for a small amount of foraminifera, taken in specific areas (such as coastal areas) undertaking strong environmental variations.
	In the past two decades, increase in the sensitivity of dual-inlet isotope ratio mass spectrometers and their coupling to automated on-line preparation devices allowed the analysis of very small amounts of calcium carbonate, down to the 5–10 g level. This instrumental improvement opened the field of analysis of single carbonate-secreting unicellular organisms such as foraminifera with weights ranging from a few tenths to hundreds micrograms for most of them. Consequently, many workers established carbon and oxygen isotope seawater curves based on such single shell analysis techniques (e.g. Kelly et al., 1996; Price et al., 1998; Zachos et al., 2007). Nevertheless, inter-individual isotopic variability for both C and O has already been documented (Shuxi and Shackleton, 1990; Billups and Spero, 1995; Saraswati, 2004) and cannot be reduced only to analytical and instrumental accuracy. However, no convincing demonstration was made so far for identifying the environmental (temperature, 18O of water, productivity and 13C of DIC) and biological (physiology and phylogeny) drivers responsible for such isotopic differences between analyzed specimens. The knowledge of the amplitude of the inter-individual oxygen isotope variability is critical considering that most short- and long-term changes in the mean annual or seasonal temperature of surface waters that did not exceed 5°C against up to 15°C for deep waters during the Phanerozoic (e.g. Shackleton, 1986; Zachos et al., 2001; 2003; Pucéat et al., 2003; Joachimski et al., 2009). Indeed, the slope of the oxygen isotope fractionation equation between calcium carbonate and water is slightly higher than 4, hence corresponding to the temperature amplitude recorded by 1‰ change in the 18O value of any aquatic carbonated shell. On the other hand, short-term changes in productivity as well as long-term variations in oxidation or burial of sedimentary organic matter typically produce variations of ±3‰ in the carbon isotope composition of seawater (Schidlowski, 1987).
	Consequently, the aim of this study is to explore the amplitude of both carbon and oxygen isotopic variability as a function of sample size (i.e., number of individual shells pooled in a sample). Selected targets were benthic foraminifera (Elphidium and Ammonia) and ostracods (Aurila) since they have been used for some paleoenvironmental reconstructions of aquatic environments (Holmes, 1996; Bauch et al., 2004). We are conscious that these species are not the most representative of large scale (in space and time) environmental reconstructions in paleoceanography. Although, as they are coastal species, strong environmental parameter changes are expected, and therefore, isotopic measurements performed on individual specimens could reflect strong range of variations. 
	2.  MATERIAL AND METHODS
	2.1. SAMPLE ORIGIN
	The studied fossil samples come from the Sarmatian (Middle Miocene, 12.8-11.5 Ma) deposits of three boreholes (Perbál-5, Mány-17 and Mány-22) in the Zsámbék Basin, Hungary, which is located in the central part of the Pannonian Basin (Fig. 1 and 2). The lithology of the Sarmatian deposits is heterogeneous: clays, clay marls, calcareous marls, sandstones and limestones. The Sarmatian sequences are underlain by Badenian strata and overlain by Pannonian or Pleistocene sediments.
	/
	Figure 1: Geographical location of the studied fossils that were sampled from the Sarmatian (Middle Miocene, 12.8–11.5 Ma) deposits of three boreholes (Perbál-5, Mány-17 and Mány-22) in the Zsámbék Basin, Hungary.
	/
	Figure 2: Lithostratigraphic Sarmatian successions in the three boreholes and location of foraminifera and ostracod samples.
	For the analyses, very well preserved calcitic shells of foraminifera (Elphidium aculeatum, E. macellum and Ammonia beccarii) and ostracods (Aurila mehesi and A. notata) were selected (Fig. 3; see Görög (1992) and Tóth (2008) for detailed systematic descriptions of the studied species). The fossil shells are derived from 102 layers of the boreholes (Fig. 2, Appendix A). Additional specimens from four marly beds (Fig. 2, Appendix B) were collected for the systematic isotopic measurements.
	/
	Figure 3: Foraminifera and ostracod species selected for stable carbon and oxygen isotope measurements. Scale bar=100 μm
	(a) Ammonia beccarii (Linné). Dorsal side. Mány-22 borehole, depth 45-52.5 m.
	(b) Ammonia beccarii (Linné). Ventral side. . Mány-22 borehole, depth 45-52.5 m.
	(c) Elphidium aculeatum (d'Orbigny). Side view. Mány-17 borehole, depth 152.8-153 m.
	(d) Elphidium macellum (Fichtel & Moll). Side view. Mány-22 borehole, depth 170-173 m.
	(e) Elphidium macellum (Fichtel & Moll). Apertural view. Mány-22 borehole, depth 170-173 m.
	(f) Aurila mehesi (Zalányi). RV. Mány-17 borehole, depth 168.7-171.2 m.
	(g) Aurila mehesi (Zalányi). LV. Mány-17 borehole, depth 168.7-171.2 m.
	(h) Aurila notata (Reuss). RV. Mány-22 borehole, depth 45-52.5 m.
	(i) Aurila notata (Reuss). LV. Mány-22 borehole, depth 45-52.5 m.
	2.2. SAMPLE TREATMENT
	For each core sample and both C and O investigations, about 100 g of air-dried sediment was soaked in a dilute solution of hydrogen peroxide and then washed over a column of sieves of diminishing mesh sizes to extract the carbonated shells (foraminifera and ostracods). Then the shells were cleaned three times with deionized water in an ultrasonic bath to remove the sedimentary matrix, and finally hand-picked under a stereomicroscope. In all samples, the calcitic shells of foraminifera and ostracods preserved their original crystal structure as it was evidenced by X-ray diffraction data (Tóth et al., 2010), therefore precluding any diagenetic alteration of the pristine carbon and oxygen isotope compositions of the studied fossils.
	2.3. ISOTOPE RATIO MEASUREMENT
	Carbon and oxygen isotope ratio measurements have been performed with a MultiPrep system on line with a dual Inlet IsoPrime™ Isotope Ratio Mass Spectrometer (IRMS). The principle of the fully automated device is to react the calcium carbonates with anhydrous phosphoric acid at 90°C to generate CO2 according to the following acid–base reaction:
	CaCO3 + H3PO4 ( CaHPO4 + CO2 + H2O. 
	Each sample was carefully ground into a powder with grain sizes around 200 m. Then the sample aliquot (typically 200 – 300 g) was placed at the bottom of a V shape vial that was then sealed with a rubber septum. The sample vials were then placed in a temperature regulated sample tray heated at 90°C. From this stage all the sample preparation is done automatically. The MultiPrep system is equipped with a double hole needle which allows the acid to be delivered in the vial and also to extract the CO2 which has been generated during the reaction. First the vial is evacuated through the external needle connected to the MultiPrep vacuum system. Then phosphoric acid is admitted in the vial through the inner needle using the acid pump. At this stage the reaction starts and CO2 is generated. The reaction time is 20 min and during all this time the needle remains inside the valve. The external cold finger is maintained at -165°C and the valve arrangement allows the CO2 generated from the reaction to be constantly extracted and trapped in the external cold finger. Once the reaction is completed the external cold finger is heated at -70°C to release the CO2 without releasing water. The CO2 pressure is read with a transducer located on the sample side of the IRMS Dual Inlet and from this pressure reading the sample analysis strategy is decided. If the sample is big enough it will be loaded in the dual inlet sample bellow and analyzed. If the sample is too small, it will be trapped in the Dual Inlet cold finger and analyzed.
	3. RESULTS 
	3.1. BACKGROUND INSTRUMENTAL UNCERTAINTY
	Determination of the instrumental noise is a prerequisite to any quantification of the carbon and oxygen isotopic variability between biological samples as a function of the number of analyzed individuals per sample. Therefore three sets of measurements have been performed on the international standard NBS–19 and an internal standard (Carrara Marble). Both were routinely measured on a daily basis over 2 months. Instrumental standard deviations associated with 18O and 13C measurements of “large” aliquots (~300 g) of both NBS–19 and Carrara marble are of 0.062‰ and 0.022‰ (NBS–19, n=49) (Table 1; Figure 4), and of 0.069‰ and 0.036‰ (Carrara marble, n=30) (Table 2; Figure 5), respectively. These comparable results allow concluding that both calcium carbonate matrices have the same degree of isotopic homogeneity, and that the Carrara marble can be consequently used instead of NBS–19 in order to evaluate the standard deviations associated with measurements of natural samples of varying size.
	TABLE 1: Carbon and oxygen isotope compositions of NBS19 aliquots over a period of six months. Sample weights vary from 280 to 390 g. N.a.: not applicable (in case where only one measurement was performed). 
	NBS-19-#
	13C ‰ V–PDB
	S.D.
	 18O ‰ V–PDB
	S.D.
	NBS19-1
	1.93
	0.004
	-2.33
	0.011
	NBS19-2
	1.96
	0.026
	-2.16
	0.185
	NBS19-3
	1.96
	0.081
	-2.16
	0.239
	NBS19-4
	1.94
	0.024
	-2.26
	0.100
	NBS19-5
	1.94
	0.027
	-2.15
	0.222
	NBS19-6
	1.96
	0.023
	-2.23
	0.041
	NBS19-7
	1.92
	n.a.
	-2.27
	n.a.
	NBS19-8
	1.98
	0.042
	-2.14
	0.092
	NBS19-9
	1.93
	0.016
	-2.22
	0.058
	NBS19-10
	1.96
	0.017
	-2.15
	0.094
	NBS19-11
	1.93
	0.007
	-2.30
	0.027
	NBS19-12
	1.95
	0.022
	-2.23
	0.050
	NBS19-13
	1.97
	n.a.
	-2.17
	n.a.
	NBS19-14
	1.98
	0.011
	-2.12
	0.013
	NBS19-15
	1.91
	0.006
	-2.18
	0.131
	NBS19-16
	1.93
	n.a.
	-2.29
	n.a.
	NBS19-17
	1.98
	0.032
	-2.12
	0.125
	NBS19-18
	1.96
	0.058
	-2.22
	0.081
	NBS19-19
	1.94
	0.027
	-2.17
	0.134
	NBS19-20
	1.93
	0.003
	-2.33
	0.017
	NBS19-21
	1.96
	0.027
	-2.15
	0.068
	NBS19-22
	1.96
	0.000
	-2.12
	0.046
	NBS19-23
	1.94
	0.011
	-2.24
	0.019
	Ctnd. TAB. 1.
	NBS19-24
	1.96
	0.023
	-2.16
	0.047
	NBS19-25
	1.94
	0.041
	-2.26
	0.132
	NBS19-26
	1.93
	0.023
	-2.24
	0.055
	NBS19-27
	1.98
	0.007
	-2.11
	0.002
	NBS19-28
	1.93
	0.055
	-2.21
	0.194
	NBS19-29
	1.94
	0.010
	-2.26
	0.021
	NBS19-30
	1.97
	0.021
	-2.14
	0.038
	NBS19-31
	1.95
	0.010
	-2.20
	0.005
	NBS19-32
	1.95
	0.007
	-2.20
	0.006
	NBS19-33
	1.95
	n.a.
	-2.20
	n.a.
	NBS19-34
	2.00
	0.057
	-2.31
	0.139
	NBS19-35
	1.90
	0.034
	-2.08
	0.154
	NBS19-36
	1.97
	0.028
	-2.21
	0.107
	NBS19-37
	1.95
	0.031
	-2.22
	0.041
	NBS19-38
	1.98
	0.001
	-2.16
	0.034
	NBS19-39
	1.97
	0.047
	-2.15
	0.212
	NBS19-40
	1.96
	0.005
	-2.20
	0.039
	NBS19-41
	1.90
	0.044
	-2.28
	0.101
	NBS19-42
	1.95
	0.021
	-2.20
	0.063
	NBS19-43
	1.95
	0.028
	-2.20
	0.121
	NBS19-44
	1.95
	0.010
	-2.20
	0.087
	NBS19-45
	1.97
	0.036
	-2.25
	0.087
	NBS19-46
	1.96
	0.022
	-2.16
	0.094
	NBS19-47
	1.93
	0.038
	-2.17
	0.124
	NBS19-48
	1.98
	0.054
	-2.11
	0.123
	NBS19-49
	1.92
	0.072
	-2.30
	0.181
	TABLE 2: Carbon and oxygen isotope compositions of Carrara marble aliquots over a period of six months. Sample weights vary from 100 to 350 g.
	CM-#
	13C ‰ V–PDB
	S.D.
	18O ‰ V–PDB
	S.D.
	CM1
	1.993
	0.044
	-1.762
	0.061
	CM2
	2.029
	0.015
	-1.962
	0.079
	CM3
	2.082
	0.017
	-1.819
	0.006
	CM4
	2.037
	0.023
	-1.836
	0.051
	CM5
	2.054
	0.072
	-1.758
	0.194
	CM6
	2.054
	0.031
	-1.846
	0.010
	CM7
	1.987
	0.023
	-1.975
	0.068
	CM8
	1.963
	0.011
	-2.056
	0.026
	CM9
	1.987
	0.032
	-1.968
	0.109
	CM10
	1.912
	0.083
	-2.016
	0.180
	CM12
	1.944
	0.044
	-1.796
	0.061
	CM13
	2.009
	0.076
	-1.846
	0.043
	CM14
	1.997
	0.080
	-1.828
	0.029
	CM15
	1.995
	0.063
	-1.917
	0.101
	CM16
	2.067
	0.024
	-1.826
	0.110
	CM18
	1.990
	0.063
	-1.884
	0.114
	CM20
	2.043
	0.037
	-1.880
	0.045
	Ctnd. TAB. 2.
	CM21
	1.958
	0.061
	-1.865
	0.088
	CM22
	2.032
	0.030
	-1.833
	0.020
	CM23
	2.018
	0.032
	-1.849
	0.052
	CM24
	2.029
	0.052
	-1.837
	0.058
	CM25
	2.019
	0.026
	-1.848
	0.085
	CM26
	2.034
	0.030
	-1.822
	0.022
	CM27
	2.016
	0.026
	-1.861
	0.021
	CM28
	2.028
	0.056
	-1.830
	0.088
	CM29
	2.022
	0.019
	-1.853
	0.053
	CM30
	2.029
	0.024
	-1.832
	0.066
	CM31
	2.020
	0.022
	-1.852
	0.044
	CM32
	2.028
	0.025
	-1.834
	0.033
	CM33
	2.021
	0.010
	-1.851
	0.027
	/
	/
	Figure 4: Evolution of 13C and 18O values of NBS 19 reference calcite over a period of six months. Sample sizes vary from 280 to 390 g.
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	Figure 5: Evolution of 13C and 18O values of Carrara marble over a period of six months. Sample sizes vary from 100 to 350 g.
	Consequently, 18O and 13C standard deviations corresponding to the background instrumental noise have been further estimated for a series of Carrara marble aliquots of varying weight from 10 to 380 g; the 29 performed measurements reveal that average instrumental standard deviations associated with 18O and 13C are of 0.133‰ and 0.057‰, respectively (Table 3; Figure 6). It is worth noting here that the average instrumental standard deviations estimated for aliquots ranging from 10 to 60 g (0.155‰ for 18O, and 0.067‰ for 13C) were larger than those obtained for aliquots ranging from 110 to 380 g (0.093‰ for 18O and 0.035‰ for 13C), illustrating the expected increase in instrumental uncertainty with decreasing quantity of analyzed material (Fig. 6).
	TABLE 3: Carbon and oxygen isotope compositions of Carrara marble aliquots which sample sizes range from 10 to 380 g.
	Sample Name
	Weight (g)
	13C ‰ V–PDB
	18O ‰ V–PDB
	CM8
	10
	1.99
	-1.90
	CM15
	10
	2.07
	-1.59
	CM22
	10
	2.10
	-1.58
	CM23
	10
	1.99
	-1.68
	CM27
	10
	1.99
	-1.64
	CM28
	10
	1.91
	-1.80
	CM29
	10
	1.98
	-1.56
	CM7
	30
	1.90
	-2.03
	CM24
	30
	1.95
	-1.76
	CM25
	40
	2.07
	-1.65
	CM26
	60
	1.92
	-1.88
	CM4
	110
	2.04
	-1.85
	CM5
	110
	2.05
	-1.80
	CM14
	110
	2.05
	-1.78
	CM19
	140
	2.02
	-1.85
	CM20
	140
	1.98
	-1.99
	CM21
	150
	2.02
	-1.93
	CM6
	160
	2.07
	-1.69
	CM13
	170
	2.05
	-1.86
	CM12
	180
	2.01
	-1.87
	CM3
	210
	2.04
	-1.96
	CM2
	260
	2.03
	-2.04
	CM10
	270
	2.10
	-1.82
	CM11
	270
	2.08
	-1.81
	CM16
	280
	2.12
	-1.71
	CM17
	280
	2.05
	-1.86
	CM1
	290
	2.01
	-1.99
	CM9
	290
	2.06
	-1.83
	CM18
	380
	2.09
	-1.84
	/
	/
	Figure 6: Variations in 13C and 18O values as a function of sample weights (10 to 380 g) of Carrara marble.
	3.2. INTER-INDIVIDUAL BIOLOGICAL VARIABILITY
	Taking into account this background instrumental uncertainty, the following hypothesis was tested with natural microfossil samples of foraminifera (Elphidium; n=51 and Ammonia; n=16) and ostracods (Aurila; n=34): for a given sample weight, the between-biological sample isotopic variability should be independent on the number of individuals pooled in each analyzed sample. Table 4 and Figure 7 show that between-biological sample standard deviations related to 18O and 13C average empirical values increase up to 0.7‰ (18O) and 0.85‰ (13C) with the number of individuals decreasing; most values being larger than the background instrumental standard deviations. Data were non-linearly least–square fitted with a power law, assuming that the standard deviation tends towards infinite values when the number of individuals per sample tends towards zero, whilst it should tend towards the background instrumental noise, i.e. the standard deviation defined by either large samples of NBS–19 or Carrara marble, when the number of individuals per sample becomes very large.
	TABLE 4: Carbon and oxygen isotope compositions of Sarmatian foraminifera (Elphidium, Ammonia) and ostracod (Aurila) samples. Standard deviations were calculated from two replicates of each sample.
	Sample #
	Species
	Weight (g)
	Individuals (n)
	Mean 13C ‰ V–PDB
	S.D.
	Mean 18O ‰ V–PDB
	S.D.
	PB-5-1
	Elphidium aculeatum
	300
	10
	-1.00
	0.078
	-1.07
	0.018
	PB-5-4
	Elphidium macellum
	300
	15
	-0.98
	0.055
	-1.69
	0.108
	PB-5-5
	Elphidium macellum
	290
	14
	0.39
	0.252
	-1.25
	0.147
	PB-5-7
	Elphidium aculeatum
	300
	9
	0.73
	0.111
	0.25
	0.160
	ctnd. TAB. 4.
	PB-5-8
	Elphidium macellum
	310
	12
	0.04
	0.102
	0.20
	0.182
	PB-5-17
	Elphidium macellum
	310
	15
	0.55
	0.004
	-0.52
	0.150
	PB-5-20
	Elphidium macellum
	300
	8
	0.77
	0.111
	-2.93
	0.164
	PB-5-21
	Elphidium macellum
	310
	5
	0.91
	0.443
	-2.53
	0.005
	PB-5-23
	Elphidium macellum
	310
	14
	1.10
	0.069
	-2.93
	0.217
	PB-5-25
	Elphidium macellum
	310
	14
	1.29
	0.055
	-2.35
	0.038
	PB-5-26
	Elphidium macellum
	310
	6
	0.55
	0.260
	-2.30
	0.036
	PB-5-28
	Elphidium aculeatum
	320
	13
	0.58
	0.096
	-2.34
	0.083
	PB-5-29
	Elphidium macellum
	310
	7
	1.54
	0.040
	-2.13
	0.081
	PB-5-33
	Elphidium macellum
	300
	9
	1.50
	0.079
	-1.68
	0.287
	PB-5-34
	Elphidium aculeatum
	310
	5
	1.80
	0.040
	-0.45
	0.025
	PB-5-36
	Elphidium macellum
	300
	12
	1.82
	0.005
	-1.73
	0.137
	PB-5-38
	Elphidium aculeatum
	310
	16
	0.48
	0.073
	-0.13
	0.170
	PB-5-46
	Elphidium hauerinum
	280
	41
	-0.16
	0.021
	-0.77
	0.061
	PB-5-47
	Elphidium macellum
	310
	26
	-0.69
	n.a.
	-1.92
	0.021
	PB-5-48
	Elphidium macellum
	280
	35
	-0.55
	0.064
	-1.87
	0.031
	PB-5-50
	Elphidium macellum
	310
	18
	-0.62
	0.082
	-2.58
	0.102
	PB-5-51
	Elphidium macellum
	300
	25
	-0.36
	0.107
	-1.59
	0.197
	PB-5-53
	Elphidium macellum
	300
	26
	0.13
	0.123
	-1.35
	0.010
	PB-5-54
	Elphidium macellum
	300
	24
	0.88
	0.060
	-1.62
	0.184
	PB-5-57
	Elphidium macellum
	290
	33
	-0.20
	0.004
	-0.53
	0.116
	M-17-2
	Elphidium macellum
	310
	21
	0.75
	0.027
	-2.47
	0.137
	M-17-4
	Elphidium macellum
	310
	17
	0.59
	0.322
	-1.00
	0.052
	M-17-6
	Elphidium aculeatum
	330
	7
	1.35
	0.140
	-1.43
	0.125
	M-17-8
	Elphidium aculeatum
	310
	10
	2.45
	0.429
	-1.00
	0.122
	ctnd. TAB. 4.
	M-17-11
	Elphidium macellum
	320
	18
	1.53
	0.072
	-1.09
	0.108
	M-17-13
	Elphidium aculeatum
	330
	14
	1.13
	0.134
	-0.59
	0.178
	M-17-14
	Elphidium aculeatum
	330
	13
	0.88
	0.043
	-0.73
	0.394
	M-17-16
	Elphidium macellum
	310
	46
	-0.08
	0.029
	-1.09
	0.091
	M-17-18
	Elphidium macellum
	310
	21
	1.38
	0.263
	-1.52
	0.029
	M-17-20
	Elphidium macellum
	310
	12
	-0.37
	0.296
	-1.20
	0.136
	M-17-22
	Elphidium macellum
	300
	14
	0.27
	0.097
	-2.22
	0.037
	M-17-24
	Elphidium macellum
	290
	16
	-0.59
	0.027
	-1.32
	0.042
	M-17-25
	Elphidium macellum
	320
	27
	-0.09
	0.005
	-2.24
	0.277
	M-17-26
	Elphidium macellum
	320
	21
	-0.40
	0.039
	-1.70
	0.191
	M-17-29
	Elphidium macellum
	320
	10
	1.08
	0.034
	-1.46
	0.139
	M-17-30
	Elphidium macellum
	290
	27
	0.38
	0.043
	-0.84
	0.080
	M-17-31
	Elphidium aculeatum
	300
	21
	-0.12
	0.073
	-1.13
	0.068
	M-17-32
	Elphidium macellum
	300
	21
	0.98
	0.101
	-1.48
	0.147
	M-17-34
	Elphidium macellum
	310
	17
	1.30
	0.475
	-3.21
	0.090
	M-17-36
	Elphidium macellum
	300
	8
	1.86
	0.092
	-2.83
	0.070
	M-17-37
	Elphidium macellum
	310
	14
	-0.98
	0.145
	-1.18
	0.032
	M-17-38
	Elphidium macellum
	290
	11
	1.92
	0.006
	-1.19
	0.124
	M-17-40
	Elphidium macellum
	290
	13
	0.58
	0.210
	-2.28
	0.423
	M-17-42
	Elphidium macellum
	310
	10
	1.04
	0.316
	-2.52
	0.055
	M-17-44
	Elphidium macellum
	310
	13
	1.11
	0.229
	-2.18
	0.066
	M-17-46
	Elphidium macellum
	320
	28
	0.49
	0.348
	-1.74
	0.689
	PB-5-6
	Ammonia becarii
	240
	35
	-0.72
	0.167
	-2.15
	0.178
	PB-5-11
	Ammonia becarii
	210
	25
	-0.09
	0.003
	-1.08
	0.183
	PB-5-13
	Ammonia becarii
	350
	14
	0.65
	0.003
	-2.49
	0.190
	ctnd. TAB. 4.
	PB-5-16
	Ammonia becarii
	320
	1
	0.36
	0.099
	-2.20
	0.293
	PB-5-31
	Ammonia becarii
	310
	19
	0.91
	0.062
	-2.90
	0.108
	PB-5-37
	Ammonia becarii
	290
	25
	0.67
	0.072
	-1.98
	0.077
	PB-5-42
	Ammonia becarii
	300
	28
	-0.13
	0.071
	-2.77
	0.201
	PB-5-43
	Ammonia becarii
	290
	36
	-0.33
	0.084
	-2.15
	0.081
	PB-5-44
	Ammonia becarii
	300
	41
	0.93
	0.089
	-2.05
	0.115
	PB-5-45
	Ammonia becarii
	300
	44
	-0.84
	0.100
	-1.09
	0.051
	PB-5-49
	Ammonia becarii
	310
	52
	-0.94
	0.010
	-2.46
	0.012
	PB-5-55
	Ammonia becarii
	300
	15
	1.14
	0.085
	-2.46
	0.037
	M-17-7
	Ammonia becarii
	300
	11
	1.09
	0.034
	-2.66
	0.169
	M-17-10
	Ammonia becarii
	320
	33
	0.51
	0.118
	-0.99
	0.003
	M-17-12
	Ammonia becarii
	330
	23
	0.91
	0.046
	-2.09
	0.534
	M-17-21
	Ammonia becarii
	310
	35
	0.47
	0.271
	-1.91
	0.040
	PB-5-2
	Aurila mehesi
	300
	5
	-2.86
	0.127
	-0.58
	0.170
	PB-5-3
	Aurila notata
	300
	5
	-5.13
	0.741
	-0.68
	0.274
	PB-5-9
	Aurila notata
	280
	3
	-6.01
	0.327
	-0.22
	0.039
	PB-5-10
	Aurila notata
	310
	9
	-6.11
	0.090
	-0.53
	0.102
	PB-5-12
	Aurila notata
	300
	8
	-3.29
	0.156
	-1.48
	0.106
	PB-5-15
	Aurila notata
	300
	9
	-4.87
	0.296
	-0.56
	0.260
	PB-5-18
	Aurila mehesi
	300
	10
	-4.24
	0.293
	-1.14
	0.228
	PB-5-19
	Aurila mehesi
	310
	8
	-2.76
	0.323
	-2.65
	0.306
	PB-5-22
	Aurila mehesi
	320
	7
	-2.45
	0.085
	-1.81
	0.031
	PB-5-24
	Aurila mehesi
	310
	4
	-0.50
	0.009
	-2.23
	0.236
	PB-5-27
	Aurila mehesi
	330
	6
	-2.37
	0.388
	-2.21
	0.174
	PB-5-30
	Aurila mehesi
	300
	7
	-2.23
	0.217
	-2.63
	0.006
	ctnd. TAB. 4.
	PB-5-32
	Aurila mehesi
	300
	11
	-1.93
	0.113
	-0.89
	0.161
	PB-5-35
	Aurila notata
	300
	9
	-1.79
	0.113
	-2.58
	0.154
	PB-5-39
	Aurila notata
	310
	14
	-5.21
	0.073
	-1.44
	0.426
	PB-5-40
	Aurila notata
	300
	8
	-4.36
	0.028
	-0.70
	0.528
	PB-5-41
	Aurila notata
	320
	9
	-3.84
	0.053
	-1.42
	0.152
	PB-5-52
	Aurila notata
	310
	8
	-3.57
	0.180
	-1.52
	0.237
	PB-5-56
	Aurila notata
	320
	9
	-3.39
	0.439
	-2.44
	0.152
	M-17-1
	Aurila mehesi
	290
	10
	-2.75
	0.285
	-1.82
	0.031
	M-17-3
	Aurila mehesi
	330
	8
	-2.65
	0.082
	-2.23
	0.220
	M-17-5
	Aurila mehesi
	320
	8
	-2.96
	0.227
	-1.27
	0.304
	M-17-9
	Aurila mehesi
	300
	16
	-2.91
	0.300
	-0.85
	0.181
	M-17-15
	Aurila notata
	290
	14
	-1.71
	0.014
	-1.79
	0.127
	M-17-17
	Aurila notata
	300
	4
	-4.97
	0.447
	-0.40
	0.009
	M-17-19
	Aurila notata
	300
	4
	-4.11
	0.308
	-0.43
	0.004
	M-17-23
	Aurila notata
	300
	9
	-5.03
	0.020
	-0.57
	0.169
	M-17-27
	Aurila notata
	310
	8
	-3.55
	0.356
	-1.45
	0.083
	M-17-28
	Aurila notata
	300
	15
	-3.38
	0.040
	-2.11
	0.295
	M-17-33
	Aurila notata
	320
	17
	-4.20
	0.428
	-1.81
	0.100
	M-17-39
	Aurila notata
	320
	6
	-3.61
	0.221
	-2.31
	0.314
	M-17-41
	Aurila notata
	330
	9
	-3.14
	0.164
	-2.70
	0.070
	M-17-43
	Aurila notata
	310
	12
	-4.20
	0.099
	-1.25
	0.012
	M-17-45
	Aurila notata
	300
	10
	-3.19
	0.849
	-2.03
	0.203
	/
	Figure 7: Variations in standard deviations of carbon and oxygen isotope measurements as a function of the number of individuals considering all three genera of foraminifera and ostracods from various levels in Sarmatian boreholes of Hungary (Fig. 2).
	The quality of the fit being so weak when considering all three genera from various sample levels simultaneously (due to inter-sample and between-taxon isotopic differences), this approach was restricted to a taxonomically homogeneous pool of Elphidium foraminifera extracted from the same, Elphidium-rich sample level from the Mány-17 borehole (Fig. 2), from which sub-samples composed of 5, 10, 20, 30 and 40 individual shells (corresponding to samples from 50 to 900 g) were generated by randomly picking-up the fossils under a stereomicroscope. Single-cell samples were not considered here due to their very small weight (average individual shell weight: 16.5 ( 3.8 g), involving relatively high associated instrumental uncertainty when compared to the 5 to 40-cell samples, and thus biasing upward the estimate of inter-biological sample variability effects. For each sub-sample size, four distinct sub-samples have been made, allowing the computation of a between-biological sample standard deviation (Table 5). Figure 8 shows that this standard deviation increases with the number of individuals decreasing according to the following power laws (including an additive constant which corresponds to the background instrumental standard deviation – a value reached asymptotically when analyzing an “infinite” pool of individuals):
	SD of 18O = 0.133 + 34.268 N-2.485, R2 = 0.83 (p = 8.9·10-2)
	SD of 13C = 0.057 + 2.748 N-0.829, R2 = 0.92 (p = 9.8·10-3),
	where N is the number of individuals in the sample. According to the prediction confidence interval belts associated to these equations, there is a probability of 95% (lower bound of the 90% C.I. belt) to obtain between-biological sample standard deviations higher than 1.02‰ and 1.45‰ for different 18O and 13C measurements of single specimens of Elphidium, respectively. Such predicted inter-individual variability is about one order of magnitude higher than the background instrumental uncertainty, indicating that a significant amount of variability of eco-physiological origin is added when considering biological organisms such as foraminifera.
	TABLE 5: Variations in carbon and oxygen isotope compositions of randomly generated sub–samples of Sarmatian Elphidium from a homogeneous pool of Elphidium macellum foraminifera extracted from the same level of Mány-17 borehole, Hungary as reported in Figure 2.
	Sample #
	Individuals
	(n)
	Weight
	(g)
	13C
	‰ V–PDB
	18O
	‰ V–PDB
	Elphi M17_1
	5
	60
	0.18
	-2.11
	Elphi M17_2
	5
	50
	-0.66
	-1.52
	Elphi M17_3
	5
	50
	-0.55
	-1.93
	Elphi M17_4
	5
	60
	-1.72
	-2.83
	Elphi M17_5
	10
	130
	0.33
	-1.43
	Elphi M17_6
	10
	140
	-0.62
	-1.75
	Elphi M17_7
	10
	140
	-0.21
	-1.63
	Elphi M17_8
	10
	160
	-0.26
	-1.66
	Elphi M17_9
	20
	380
	0.30
	-1.69
	Elphi M17_10
	20
	330
	0.02
	-1.43
	Elphi M17_11
	20
	350
	-0.50
	-1.68
	Elphi M17_12
	20
	330
	-0.15
	-1.88
	Elphi M17_13
	30
	570
	-0.11
	-1.43
	Elphi M17_14
	30
	540
	0.27
	-1.55
	Elphi M17_15
	30
	610
	-0.12
	-1.79
	Elphi M17_16
	30
	610
	-0.33
	-1.61
	Elphi M17_17
	40
	710
	-0.26
	-1.47
	Elphi M17_18
	40
	850
	-0.34
	-1.64
	Elphi M17_19
	40
	790
	-0.51
	-1.74
	Elphi M17_20
	40
	900
	-0.13
	-1.73
	/
	Figure 8: Variations in standard deviations of carbon and oxygen isotope measurements as a function of the number of individuals from the same pool of Elphidium foraminifera from the Mány-17 borehole (Fig. 2).
	4. DISCUSSION
	Isotopic studies of carbonated skeletons cannot escape the question of a possible diagenetic alteration that may potentially modify their pristine compositions. Selected foraminifera and ostracod samples from the Miocene deposits of Hungary have been already evaluated for their state of preservation as attested by the quality of their ultrastructure imaged by SEM techniques (Tóth et al., 2010). However, no definitive criterion is available in order to discard unambiguously alteration processes responsible for sizable changes in the post-depositional compositions of carbonated fossils. Nevertheless, on the basis of mass balance considerations, one can expect two isotopic patterns of water–mineral interactions that could operate within sedimentary deposits. The first one is the production of homogenized isotopic compositions of fossils in response to large volumes of aqueous fluids interacting with the hosting sediment; the second one, driven by low water–mineral ratios, should produce isotopic heterogeneities without any relation to the sample size (i.e., number of sampled individuals). These two scenarios do not match the observed distribution of isotopic compositions in studied foraminifera and ostracod shells.
	Carbon and oxygen isotope compositions of the studied carbonated fossil shells show unambiguously that empirical between-biological sample variability associated with 18O and 13C largely exceeds the background instrumental uncertainty and clearly relates to inter-individual variability (Fig. 7 and 8). This result clearly impacts interpretation of variations in both 18O and 13C values of marine carbonated microfossils as indicators of change in ambient seawater temperature and productivity.
	Indeed, in order to be able to detect subtle variations in seawater temperature based on 18O values, a minimum of 35 pooled specimens of Elphidium is necessary to reach a between-sample standard deviation ( 0.25‰ with a probability of 95%, corresponding to an estimated temperature uncertainty ( ±1°C at a 95% confidence level (Fig. 8). The analysis of less than 3 pooled individual shells returns standard deviation values ≥ 0.25‰ in more than 95% of the sample cases, a value exceeding 1‰ (corresponding to an actual seawater estimated temperature uncertainty of at least ±4°C at a 95% confidence level) when a single specimen of Elphidium is analyzed. In such cases of large uncertainty, the detection of thermal events such as changes in oceanic circulation or climatic events recorded by coastal waters (whose amplitudes rarely exceed 5°C as documented since the Mesozoic; Shackleton, 1986; Norris and Röhl, 1999; Lécuyer et al., 2003; Pucéat et al., 2003; Joachimski et al., 2009) obviously becomes problematic, if not impossible. The oxygen isotope composition of benthic foraminifera such as Elphidium has been also extensively used as a proxy of variations in the 18O of seawater as a consequence of changes in the continental ice volume. Once again, this threshold of ~1‰ associated with the analysis of a single foraminifera shell constitutes a “biological isotopic noise” in the same order of magnitude as the variation in the 18O of the oceans resulting from ice cap growth during a glacial stage or a complete melting of existing ice caps during a greenhouse interlude (Shackleton and Kennett, 1975; Billups and Schrag, 2003; Pekar and DeConto, 2006. Again, these results challenge the interpretation of the 18O signal for coastal benthic foraminifera only. For the open ocean record, including benthic and planktonic isotopic compositions on a regional interval, quantitative estimations based on several specimens seem to stay valid, taking into account local perturbations such as current strength or origin (Van Sebille et al., 2015). In addition to this study, the same approach needs to be performed on individual benthic or planktonic specimen taken in large scale areas, to investigate open-ocean parameter reconstructions. Deeper studies could also test differences observed at several depths in the water column, taking into account different sizes within a single foraminifera species.
	Concerning carbon isotope measurements, a minimum of 15 and 44 Elphidium individuals is required in order to reach between-sample standard deviations ( 0.5‰ and ( 0.25‰, respectively (Fig. 8). The carbon isotope analysis of a single specimen generates a standard deviation ≥ 1.45‰ in 95% of the sample cases; such threshold is comparable to secular changes in the 13C values recorded in the marine carbonate deposits which are interpreted either as variations in the primary production at time scales of about 50,000 yr, or variations in the burial or oxidation rates of sedimentary organic matter at time scales of about 1 Myr (e.g. Magaritz et al., 1992; Kump and Arthur, 1999). However, this between-sample standard deviation predicted for a single specimen analysis in a homogeneous taxonomical and environmental/climatic context is significantly lower than some spectacular carbon isotope excursions recorded in sediments and which were interpreted as related to extreme events such as food chain rupture, volcanic paroxysm and large methane release by clathrates (e.g. Röhl et al., 2000; Pálfy et al., 2001; Hesselbo et al., 2002).
	Contrasting with the two relations inferred for 18O and 13C, it is worth noting that the average observed values of inter-biological sample standard deviation in the 5–40 specimens and 50–900 g sample weight ranges are slightly higher for 13C than for 18O measurements. Actually, based on the instrumental standard deviations as evidenced above, one should expect the reverse situation if such inter-biological sample standard deviations were the consequence of an instrumental mass fractionation (the average instrumental error is ~2.3 times larger for 18O than for 13C based on 29 Carrara marble aliquots). Indeed, such result clearly points to the fact that the inter-biological sample variability evidenced here does originate in an inter-individual natural heterogeneity (i.e., biological variability) rather than in an instrumental fractionation spurious analytical effect. This result makes sense with regard to the specific environmental life style of Elphidium, a coastal species for which strong natural variations in salinity and temperature could be expected.
	Inter-individual 18O and 13C variations as evidenced here between specimens from the same foraminifera genus and fossil level are most likely resulting from eco-physiological intrinsic differences in metabolism (e.g., individual position within the autotrophy-heterotrophy gradient) and environmental conditions (e.g., depth-related changes in temperature and luminosity, and composition of dissolved inorganic carbon). In addition, such irreducible biological variability could be strongly, but artefactually enhanced by cryptic biological speciation events as increasingly evidenced in marine, planktic as well as benthic organisms (Knowlton, 1993; de Vargas et al., 1999, 2004; Irigoien et al., 2004; Chen and Hare, 2008; Darling and Wade, 2008). An efficient way to further exploring such possibility should be to independently perform the kind of analysis leading to Figure 8 on distinct morphological species showing contrasted cryptic diversity contexts (the higher the cryptic diversity, the steeper the decreasing slope of the number of individuals vs. between-sample standard deviation relation). The ongoing effort in developing morphometrical recognition models of cryptic species (e.g., Morard et al. 2009) should allow solving this problem in the future. Future studies could also investigate open ocean foraminifera species, benthic or planktonic, usually used for large-scale (in both space and time) paleoceanographic reconstructions.
	5. CONCLUSION
	We have shown in this study that recent automated systems designed for the analyses of 13C and 18O from carbonate samples are capable of measuring reliably small quantities of pure calcite down to 5–10 g with instrumental standard deviations close to 0.1‰. Such analytical accuracy opens up possibilities for the analysis of small microfossils like foraminifera, especially for paleoclimate reconstruction purposes. Nevertheless, data generated from small numbers of specimens (e.g., carbonated shells from single-cell organisms) have to be considered with great caution. Indeed, our results show a general trend to increase the between-biological sample standard deviation for both 13C and 18O measurements when decreasing the number of specimen analysed. Based on a systematic study performed on a homogeneous pool of Elphidium coastal benthic foraminifera, we estimate that there is a probability of 95% to obtain between-biological sample standard deviations higher than 1.02‰ and 1.45‰ for 18O and 13C measurements of various single shells, respectively.
	Such biological intrinsic and irreducible variability observed between coeval samples clearly questions the interest for single-cell analyses for environments undertaking rapid and strong variations in their physical parameters, such as salinity and temperature. For this specific example, paleotemperature estimates should not be done on single foraminifera 18O measurements.
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