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ABSTRACT 

The description of spontaneous fission of actinides by the macroscopic-microscopic method 
consisting of the Lublin Strasbourg Drop model and the two deformed Nilsson wells or the 
Yukawa folded single-particle potential is presented. The microscopic shell corrections are 
obtained by the Strutinsky method, while the pairing correlations are taken into account 
within the BCS theory. It was shown that the pairing strength should grow with increasing 
deformation of fissioning nucleus in order to obtain right estimates of the pairing field in the 
fission fragments. The fission barrier heights are estimated using the topographical theorem 
of Swiatecki. 
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1. INTRODUCTION 

The nuclear fission was discovered in 1938 by Otto Hahn, Fritz Strassmann [6], 
and Lisa Meitner [9]. The first theoretical description of this phenomenon was given 
in 1939 by Niels Bohr and John A. Wheeler [3], but the mechanism of the nuclear, 
even spontaneous, fission is not fully understood till now. The nuclear fission half-
                                                   

1 The paper is devoted to the memory of the late Professor Stanisław Szpikowski 
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life times  and the origin of asymmetric fission or the kinetic energy distribution 
of fission fragments need further studies. The shell and pairing corrections in the 
ground state are crucial for the fission life-times and the barrier heights estimates 
while the microscopic shell and pairing corrections around the scission point decide 
about the mass and kinetic energy distribution of the fission fragments. The 
microscopic corrections were calculated using the single-particle levels of Yukawa 
folded [4] or Nilsson [16] potentials and added to the macroscopic Lublin 
Strasbourg Drop [18]. 

The Strutinsky method [21] was used to obtain the shell correction in the 
fissioning nucleus and its fragments. It will be shown that the sum of the shell 
corrections of both fragments is nearly equal to the shell correction evaluated in the 
mother nucleus even for asymmetric fission. 

The pairing correlation were calculated using the BCS theory [1] with the 
monopole pairing force for the mother nucleus and both fragments. We shall show 
in the following that the additive property is not fulfilled in asymmetric fission, 
where the pairing energy of the total system differs from the sum of the pairing 
energies of the fragments. 

It is well known that shape dependent pairing forces switch off the pairing 
correlations between orbitals in different fragments while it is not the case for the 
ordinary monopole pairing force. That is why we recommend to use in almost 
separated system the -pairing or the Gogny force [5] instead of the monopole force. 
We are going also to show that the average pairing energy should grow with 
deformation in order to reproduce the masses of the fragments after scission. The 
role of average pairing energy on the fission barrier estimates will be analysed too. 

We begin the article with the Lublin Strasbourg Drop (LSD) model [18], which 
reproduces well the nuclear masses and the fission barrier heights. Then, we present 
the shell and pairing corrections at large deformations close to the scission point of 
the fissioning nucleus and show the influence of the average pairing energy on the 
fission barrier heights of nuclei with . 

2. NUCLEAR ENERGY OF DEFORMED NUCLEI 

2.1. MACROSCOPIC BINDING ENERGY 

According to the idea of Meitner and Frisch [9], Bohr and Wheeler [3] have 
assumed that the liquid drop formula consists of the volume energy, and the 
deformation dependent surface and Coulomb energy terms:  

  (1) 
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where  is a set of expansion coefficients of nuclear radius in Legendre 
polynomials  series  

 . (2) 

Here  is the radius of a deformed nucleus which has the same volume as 
the spherical one. 

Analysing the liquid drop potential energy surface, Bohr and Wheeler have 
shown that the saddle point of the liquid drop energy function in the  
deformation parameters space appears at large deformation  and the fission barrier 
occurs when the fissility parameter  

  (3) 

is smaller than 1, what is clearly seen when one expands the relative to sphere 
surface and Coulomb energies in the Taylor series with respect to the deformation 
parameters:  

  (4) 

The shell effects were included to the deformed macroscopic potential energy 
surface in 1966 by Myers and Swiatecki who have proposed a phenomenological 
formula for the shell correction energy [13] and reproduced with a good accuracy 
the known at that time nuclear masses. After appearance of this first macroscopic-
microscopic model [12] several more complex macroscopic formulae containing 
more adjustable parameters were developed: the droplet model [13], the Yukawa-
plus-exponential anzatz [7], the finite-range droplet model [10] or the Thomas-Fermi 
theory [14]. Surprisingly, it was shown in Ref. [18] that a simple liquid drop formula 
containing in addition to Eq. (1) the surface curvature term is able to reproduce both 
the experimental binding energies and the fission barrier height with even better 
accuracy that the above more complicated models with the same microscopic energy 
corrections. This Lublin Strasbourg Drop (LSD) mass formula [18] reads:  

  (5) 

where the congruence energy  is defined in Ref. [15]. The mass of a nucleus 
composed of  protons and  neutrons is  

  (6) 

The microscopic part of the binding energy  consists of the shell  and 
pairing  energy corrections  
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  (7) 

One can obtain the microscopic energy corrections using e.g. the Nilsson [16, 
17], the Saxon-Woods [22] or the Yukawa-folded [4] single-particle potentials and 
the Strutinsky method to evaluate the shell energy corrections [21, 17], while the 
BCS theory is used to get the pairing correlations energy [1, 17]. 

All results presented below were obtained using the LSD macroscopic energy 
model with the curvature term [18] as shown in Eq. (5) and the Nilsson [16, 17] or 
the Yukawa-folded [7, 10] single-particle potentials . 

2.2. SHELL CORRECTION 

The Strutinsky shell energy is given by the following difference:  

   (8) 

where the sum goes over all occupied single-particle (s.p.) energies  and the 
second term is the smoothed s.p. energy sum which can be calculated by the 
Strutinsky prescription [21, 17]. The total shell-energy consists of the proton and 
neutron contributions. The average sum of the single-particle energies is given by 
the integral  

  (9) 

where  is the smooth level density obtained by folding the real spectrum of the 
single-particle energies  

 . (10) 

with Gauss function multiplied by the sixth order [17]  

 . (11) 

or higher order correction polynomial. The smearing parameter  should be of the 
order of the distance between the major shells to wash out the shell effects in  
and ensure the plateau condition (independence on ) of the shell energy. One 
obtains the average Fermi energy  in Eq. (9) from the particle number equation in 
the system with the smoothed shell structure  

 . (12) 

An alternative to the Strutinsky approach is the averaging of the single-particle 
energy sum over the number of particles (see e.g. [19]). This method leads to similar 
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magnitudes of the shell energy corrections for deformed nuclei while for the 
spherical ones absolute values of the negative energy corrections are larger.  

2.3. ADDITIVE PROPERTY OF THE SHELL CORRECTIONS 

Let us assume that we are dealing with the almost separated fission fragments. 
The single-particle potential well of such system is schematically presented in 
Fig. 1. The bound single-particle levels, which one obtains after diagonalization of 
the Hamiltonian with such a potential, are already localised in the two wells 
corresponding to each fission fragment. Only the weakly bound and unboud states 
have wave functions which are distributed over the whole system.  
 

 
Figure 1: Schematic plot of a single-particle potential well corresponding to the two almost 
separated fission fragments. 

The common energy spectrum of the bound states can be separated into the 
levels belonging to the heavy or to the light fragment: . Both fragments 
should have the same average Fermi energy (12) as the mother nucleus because the 
system is not yet fully divided: . For such a configuration the following 
relations can be written:  

  (13) 

So  

  (14) 

and  

  (15) 
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2.4. PAIRING CORRECTION 

The pairing correction is defined as the difference between the BCS and the 
average pairing energy  

  (16) 

The average pairing correlation energy was supposed to be already contained in 
the macroscopic part of the binding energy [12], which is not necessarily true. We 
shall point this later in Sec. 3. The pairing energy  is equal to the difference of 
the BCS [1] energy and the sum of the energies of the occupied single-particle 
levels: [17]  

  (17) 

where  

  (18) 

 is the pairing strength,  and  are the occupation and unoccupation BCS 
factors.  

2.5. ADDITIVE PROPERTY OF THE PAIRING CORRECTIONS 

In the case of the pairing energy, the average pairing gaps could be different in 
both fragments. Let us consider a nucleus composed of two almost separated 
fragments in which the pairing correlations are described by the monopole pairing 
Hamiltonian:  

  (19) 

where  and  the particle creation and annihilation operators and  denotes 
a time reversal single-particle state. One can define the operators of annihilation of 
a pair of particles in each fragment ( -light or -heavy):  

  (20) 

and corresponding creation operators  and . The single-
particle and pairing Hamiltonian in the new operators takes the following form:  

 . (21) 
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Figure 2: Sum of the shell energies of fragments (solid line) and the shell energy of the 
mother nucleus 236U (dotted line) as functions of the heavy fragment mass (upper row). 
Similar data but for the pairing energy are plotted in the bottom row. Left column 
corresponds to spherical heavy fragment and prolate light one while the r.h.s column shows 
the results when both fragments are prolate. 

The monopole pairing strength  is in the first approximation proportional to 
, so in the case of the separated fragments the approximation 

 is not valid any more. One should rather assume:  
and , where the equality sign is valid for the symmetric fission only. 

The BCS equations for almost separated fragments will take the following form:  

  (22) 

and  

  (23) 

where  

  (24) 

with  and . 

2.6. ADDITIVE PROPERTY OF MICROSCOPIC CORRECTIONS 

In Fig. 2 the two deformed Nilsson [17] wells are used to describe the 
configuration of the fission fragments. The shell (upper row) and the pairing (bottom 
row) energy of the mother system (dashed lines) are compared with the sum of the 
shell energies (solid lines) of the both fragments of 236U for different mass ratios and 
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two different shapes of the fragments. It is seen in Fig. 2 that the shell energy of the 
mother nucleus is nearly equal to the sum of the fragments shell energies as it should 
be according to Eq. (15). The pairing energy is almost doubled in the fragments as 
can be visible in the two bottom plots in Fig. 3. This is in agreement with results 
obtained in Ref. [20] for the systems without shell structure. In the plot we haven’t 
subtracted the average pairing energy nor the pairing diagonal term. The pairing 
strengths for the mother nucleus and fission fragments was adjusted to the average 
experimental proton and neutron gaps:  MeV and  
MeV taken from Ref. [11].  
 

 
Figure 3: Shell energy (dashed line), the sum of the pairing energies of the fragments (dotted 
line) and the total microscopic energy (solid line) as functions of the heavy fragment mass 

. The results are drawn for four elongations ,  of heavy and light fragment (written in 
the plots). 

The total value of the microscopic energy as well as its both components  
and  are plotted in Fig. 3 as functions of the heavy fragment mass. Each of four 
plots corresponds to a different deformations of the fission fragments. We have 
switched off the pairing interaction between orbitals belonging to different 
fragments. This can be done automatically when one uses e.g. the -pairing force [8] 
instead of the monopole pairing interaction  

  (25) 

where  is the  pairing strength,  and  denote Pauli matrices of protons and 
neutrons. Matrix elements of the -pairing force are:  

  (26) 
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where , where  is the single-particle wave function. It means that 
the matrix elements (26) vanish when the orbits  and  belong to the different 
fragments. One obtains similar effect in case of the Gogny interaction [5] 
frequently used in the self-consistent Hartee-Fock-Bogolubov calculations. 

3. CONGRUENCE AND THE AVERAGE PAIRING ENERGIES 

In the macroscopic-microscopic model one usually assumes that the average 
pairing energy is contained in the macroscopic part of the binding energy. To check 
the validity of this assumption one has evaluated in Ref. [20] the average monopole 
pairing energy of nuclei from different mass regions at small deformations 
corresponding to the ground state and at the scission configurations. The 
proportional to  term in Eq. 18 was taken into account when evaluating the 
pairing energy.  
 

 
Figure 4: Average pairing energy of nuclei at the ground state and at the scission point in 
function of . Here, the pairing strength is proportional to the surface of deformed nucleus 
and  denotes the frequency of the spherical harmonic oscillator in the Nilsson type 
potential (After [20]). 

The results are presented in Fig. 4. One can see that the average pairing energy 
in the ground state is almost -independent and approximately equal to -14 MeV. 
This result means that the average-pairing should be doubled when two fission 
fragments are born from the mother nucleus. There is no mechanism in the 
macroscopic-microscopic model which can give this effect. The only remedy is to 
assume that the average-pairing energy should not be included into the macroscopic 
energy. In addition one has to take the deformation dependent monopole-pairing 
strength or more complex pairing force as discussed in the previous section. The 
taking into account only the fluctuative part of the pairing energy  leads only 
to a systematic error in the deformation dependence of the macroscopic-microscopic 
energy. One has to add to the macroscopic energy  the whole pairing energy 



38 K. POMORSKI, B. NERLO-POMORSKA  

(17) not only its fluctuating part in order to get proper estimates of the binding 
energy at the saddle-point as well as at the scission configuration. 

 

 
Figure 5: Macroscopic fission barrier  of 252Cf isotope as 
function of the quadrupole deformation of nuclei. The barrier is evaluated using the LSD 
energy (dotted line) minimised with respect to higher multipolarity deformations  

 ( ) and with taking into account the deformation dependence of the 
congruence energy (dashed lines) and the average-pairing terms (solid line). The cross 
corresponds to the experimental fission barrier height reduced by the microscopic effects at 
the ground-state according to the topographical theorem [14]. 

It was shown in Ref. [20] that the proportional to the surface monopole pairing 
strength ( ) can roughly give the doubling effect of the pairing energy at 
scission. It is seen in Fig. 4 that the magnitude of  evaluated with  at 
the scission configuration is much larger (almost twice for the heaviest nuclei) than 
in the ground-state.  
 

 
Figure 6: LSD fission barrier barrier heights of actinide nuclei (points) compared with the 
data (crosses). The topographical theorem [14] was used to obtain these estimates. 

Similar effect but for the congruence (Wigner) energy was already noticed in 
Ref. [15], where one has assumed that the congruence energy at the scission point is 
twice as large as in the ground state. The effect of deformation dependent 
congruence and average pairing energy on the fission barrier heights was discussed 
in Ref. [20] and is shown in Fig. 5 for Br to Cf isotopes. It is seen in Fig. 5 that the 
deformation dependent average-pairing and congruence energies do not change 



 ROLE OF THE SHELL AND PAIRING EFFECTS IN NUCLEAR FISSION 39 

 

much the barrier height of heavy nuclei but significantly approach the estimates of 
the fission barrier heights to their measured values as shown in Ref. [20]. 

The barrier heights were estimated using the topographical theorem of Swiatecki 
in which one assumes that the binding energy of nucleus at the saddle is mostly 
determined by the macroscopic part of the binding energy. The quality of this 
approximation can be seen in Fig. 6, where the experimental fission barrier heights 
of 18 actinide nuclei are compared to their estimates in which the LSD macroscopic 
mass formula was used to evaluate the mass of nuclei at the saddle point which was 
determined within the MFH shape parametrisation [2]. All estimates except one 
(252Cf) are slightly below the data (r.m.s. 310 keV) what leaves a place for the small 
unwashed shell effects at the saddle.  
 

 
Figure 7: Potential energy surface of 210Po in elongation  and asymmetry  plane. 

4. POTENTIAL ENERGY SURFACE 

The potential deformation energy of a nucleus is equal:  

  (27) 

An example of results of the potential energy surface of 210Po isotope is 
presented in Fig. 7. The calculation was done with the Yukawa-folded (YF) single-
particle potential and LSD macroscopic energy using the Modified Funny-Hills 
shape parametrization of the deformed nucleus shapes [2]. The parameter  
corresponds to the elongation of fissioning nucleus while  describes the mass 
asymmetry mode. One can see that the second barrier is significantly reduced by the 
reflection asymmetry, while the super-deformed (SD) and hyper-deformed (HD) 
minima are on the path which corresponds to the symmetric in mass fission. One has 
to stress here that the proper choice of the shape parametrization was very important 
to obtain the shell effects at such very elongated shapes. The right hand side end of 
the potential energy surface corresponds to the liquid drop scission line. 
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5. CONCLUSIONS 

The following conclusions can be drawn from our investigations: 
• The sum of shell energies of the fission fragments is close to the shell energy of 

the mother system around the scission configuration. 
• The sum of pairing energies of the fission fragments could be different from the 

pairing energy evaluated for the common system close to the scission 
configuration corresponding to the symmetric fission. 

• The deformation dependent congruence energy and the pairing strength 
proportional to the nuclear surface improve the estimates of the barrier heights 
of the light nuclei. 

• The average pairing energy of fissioning nucleus should grow with deformation 
to the double value at the scission point. 

• Lublin Strasbourg Drop describes well masses of all isotopes both in the ground 
state and saddle points. 
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	/ (13)
	So 
	/ (14)
	and 
	/ (15)
	2.4. PAIRING CORRECTION
	The pairing correction is defined as the difference between the BCS and the average pairing energy 
	/ (16)
	The average pairing correlation energy was supposed to be already contained in the macroscopic part of the binding energy [12], which is not necessarily true. We shall point this later in Sec. 3. The pairing energy / is equal to the difference of the BCS [1] energy and the sum of the energies of the occupied single-particle levels: [17] 
	/ (17)
	where 
	/ (18)
	/ is the pairing strength, / and / are the occupation and unoccupation BCS factors. 
	2.5. ADDITIVE PROPERTY OF THE PAIRING CORRECTIONS
	In the case of the pairing energy, the average pairing gaps could be different in both fragments. Let us consider a nucleus composed of two almost separated fragments in which the pairing correlations are described by the monopole pairing Hamiltonian: 
	/ (19)
	where / and / the particle creation and annihilation operators and / denotes a time reversal single-particle state. One can define the operators of annihilation of a pair of particles in each fragment (/-light or /-heavy): 
	/ (20)
	and corresponding creation operators / and /. The single-particle and pairing Hamiltonian in the new operators takes the following form: 
	/. (21)
	/
	Figure 2: Sum of the shell energies of fragments (solid line) and the shell energy of the mother nucleus 236U (dotted line) as functions of the heavy fragment mass (upper row). Similar data but for the pairing energy are plotted in the bottom row. Left column corresponds to spherical heavy fragment and prolate light one while the r.h.s column shows the results when both fragments are prolate.
	The monopole pairing strength / is in the first approximation proportional to /, so in the case of the separated fragments the approximation / is not valid any more. One should rather assume: / and /, where the equality sign is valid for the symmetric fission only.
	The BCS equations for almost separated fragments will take the following form: 
	/ (22)
	and 
	/ (23)
	where 
	/ (24)
	with / and /.
	2.6. ADDITIVE PROPERTY OF MICROSCOPIC CORRECTIONS
	In Fig. 2 the two deformed Nilsson [17] wells are used to describe the configuration of the fission fragments. The shell (upper row) and the pairing (bottom row) energy of the mother system (dashed lines) are compared with the sum of the shell energies (solid lines) of the both fragments of 236U for different mass ratios and two different shapes of the fragments. It is seen in Fig. 2 that the shell energy of the mother nucleus is nearly equal to the sum of the fragments shell energies as it should be according to Eq. (15). The pairing energy is almost doubled in the fragments as can be visible in the two bottom plots in Fig. 3. This is in agreement with results obtained in Ref. [20] for the systems without shell structure. In the plot we haven’t subtracted the average pairing energy nor the pairing diagonal term. The pairing strengths for the mother nucleus and fission fragments was adjusted to the average experimental proton and neutron gaps: / MeV and / MeV taken from Ref. [11]. 
	/
	Figure 3: Shell energy (dashed line), the sum of the pairing energies of the fragments (dotted line) and the total microscopic energy (solid line) as functions of the heavy fragment mass /. The results are drawn for four elongations /, / of heavy and light fragment (written in the plots).
	The total value of the microscopic energy as well as its both components / and / are plotted in Fig. 3 as functions of the heavy fragment mass. Each of four plots corresponds to a different deformations of the fission fragments. We have switched off the pairing interaction between orbitals belonging to different fragments. This can be done automatically when one uses e.g. the /-pairing force [8] instead of the monopole pairing interaction 
	/ (25)
	where / is the / pairing strength, / and / denote Pauli matrices of protons and neutrons. Matrix elements of the /-pairing force are: 
	/ (26)
	where /, where / is the single-particle wave function. It means that the matrix elements (26) vanish when the orbits / and / belong to the different fragments. One obtains similar effect in case of the Gogny interaction [5] frequently used in the self-consistent Hartee-Fock-Bogolubov calculations.
	3. CONGRUENCE AND THE AVERAGE PAIRING ENERGIES
	In the macroscopic-microscopic model one usually assumes that the average pairing energy is contained in the macroscopic part of the binding energy. To check the validity of this assumption one has evaluated in Ref. [20] the average monopole pairing energy of nuclei from different mass regions at small deformations corresponding to the ground state and at the scission configurations. The proportional to / term in Eq. 18 was taken into account when evaluating the pairing energy. 
	/
	Figure 4: Average pairing energy of nuclei at the ground state and at the scission point in function of /. Here, the pairing strength is proportional to the surface of deformed nucleus and / denotes the frequency of the spherical harmonic oscillator in the Nilsson type potential (After [20]).
	The results are presented in Fig. 4. One can see that the average pairing energy in the ground state is almost /-independent and approximately equal to -14 MeV. This result means that the average-pairing should be doubled when two fission fragments are born from the mother nucleus. There is no mechanism in the macroscopic-microscopic model which can give this effect. The only remedy is to assume that the average-pairing energy should not be included into the macroscopic energy. In addition one has to take the deformation dependent monopole-pairing strength or more complex pairing force as discussed in the previous section. The taking into account only the fluctuative part of the pairing energy / leads only to a systematic error in the deformation dependence of the macroscopic-microscopic energy. One has to add to the macroscopic energy / the whole pairing energy (17) not only its fluctuating part in order to get proper estimates of the binding energy at the saddle-point as well as at the scission configuration.
	/
	Figure 5: Macroscopic fission barrier / of 252Cf isotope as function of the quadrupole deformation of nuclei. The barrier is evaluated using the LSD energy (dotted line) minimised with respect to higher multipolarity deformations / (/) and with taking into account the deformation dependence of the congruence energy (dashed lines) and the average-pairing terms (solid line). The cross corresponds to the experimental fission barrier height reduced by the microscopic effects at the ground-state according to the topographical theorem [14].
	It was shown in Ref. [20] that the proportional to the surface monopole pairing strength (/) can roughly give the doubling effect of the pairing energy at scission. It is seen in Fig. 4 that the magnitude of / evaluated with / at the scission configuration is much larger (almost twice for the heaviest nuclei) than in the ground-state. 
	/
	Figure 6: LSD fission barrier barrier heights of actinide nuclei (points) compared with the data (crosses). The topographical theorem [14] was used to obtain these estimates.
	Similar effect but for the congruence (Wigner) energy was already noticed in Ref. [15], where one has assumed that the congruence energy at the scission point is twice as large as in the ground state. The effect of deformation dependent congruence and average pairing energy on the fission barrier heights was discussed in Ref. [20] and is shown in Fig. 5 for Br to Cf isotopes. It is seen in Fig. 5 that the deformation dependent average-pairing and congruence energies do not change much the barrier height of heavy nuclei but significantly approach the estimates of the fission barrier heights to their measured values as shown in Ref. [20].
	The barrier heights were estimated using the topographical theorem of Swiatecki in which one assumes that the binding energy of nucleus at the saddle is mostly determined by the macroscopic part of the binding energy. The quality of this approximation can be seen in Fig. 6, where the experimental fission barrier heights of 18 actinide nuclei are compared to their estimates in which the LSD macroscopic mass formula was used to evaluate the mass of nuclei at the saddle point which was determined within the MFH shape parametrisation [2]. All estimates except one (252Cf) are slightly below the data (r.m.s. 310 keV) what leaves a place for the small unwashed shell effects at the saddle. 
	/
	Figure 7: Potential energy surface of 210Po in elongation / and asymmetry / plane.
	4. POTENTIAL ENERGY SURFACE
	The potential deformation energy of a nucleus is equal: 
	/ (27)
	An example of results of the potential energy surface of 210Po isotope is presented in Fig. 7. The calculation was done with the Yukawa-folded (YF) single-particle potential and LSD macroscopic energy using the Modified Funny-Hills shape parametrization of the deformed nucleus shapes [2]. The parameter / corresponds to the elongation of fissioning nucleus while / describes the mass asymmetry mode. One can see that the second barrier is significantly reduced by the reflection asymmetry, while the super-deformed (SD) and hyper-deformed (HD) minima are on the path which corresponds to the symmetric in mass fission. One has to stress here that the proper choice of the shape parametrization was very important to obtain the shell effects at such very elongated shapes. The right hand side end of the potential energy surface corresponds to the liquid drop scission line.
	5. CONCLUSIONS
	The following conclusions can be drawn from our investigations:
	• The sum of shell energies of the fission fragments is close to the shell energy of the mother system around the scission configuration.
	• The sum of pairing energies of the fission fragments could be different from the pairing energy evaluated for the common system close to the scission configuration corresponding to the symmetric fission.
	• The deformation dependent congruence energy and the pairing strength proportional to the nuclear surface improve the estimates of the barrier heights of the light nuclei.
	• The average pairing energy of fissioning nucleus should grow with deformation to the double value at the scission point.
	• Lublin Strasbourg Drop describes well masses of all isotopes both in the ground state and saddle points.
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