Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

R Annales UMCS
@@ %2 Annales UMCS Informatica Al 6 (2007) 23-36 Informatica
"a,_: - & Lublin-Polonia

L TR Sectio AI

http://www.annales.umcs.lublin.pl/

Distributed genetic algorithm implementation by means
of Remote Methods Invocation technique — Java RMI

. *
Y.ukasz Maciura

The Bronistaw Markiewicz State School of Higher Vocational Education in Jarostaw,
Czarnieckiego 16, 37-500 Jarostaw, Poland

Abstract

The aim of this work is distributed genetic algorithm implementation (so called island
algorithm) to accelerate the optimum searching process in space of solutions. The distributed
genetic algorithm has also smaller chances to fall in local optimum. This conception depends on
mutual cooperation of the clients who perform separate work of genetic algorithms on local
machines.

As a tool for implementation of distributed genetic algorithm, created to produce net
application Java technology was chosen. In Java technology, there is a technique of remote
methods invocation — Java RMI. By means of invoking remote methods, objects between the
clients and the server RMI can be sent.

To test the work of genetic algorithm, searching for maximum function of two variables which
possess a lot of local maxima and can be written by means of mathematical formula was chosen.

The work of the whole system depends on existence of the server on which there are registered
remote services (methods) RMI and clients, each one on a separate machine. Each of the clients
has two threads, one of them accomplishes the work of local genetic algorithm whilst the other
accomplishes the communication with the server. It sends to the server a new best individual
which was found by the local genetic algorithm and takes the server form with the individuals, left
there by other clients.

To sum up there was created an engine of distributed genetic algorithm which searches the
maximum of function and after a not large modification can be used to solve every optimization
problem.

1. Introduction

To accelerate the optimum searching process in space of solutions for genetic
algorithm, distributed genetic algorithm (so called island algorithm [1]) was
implemented. On the whole, a characteristic feature of classical genetic
algorithm is that it has small chances to fall in local optimum. It is a very
positive feature which distinguishes it from other heuristic algorithms, but

*E-mail address: |_maciura@pwszjar.edu.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

24 Lukasz Maciura

nothing is without a defect. Unfortunately, this algorithm has this negative
feature, that searching of global optimum lasts much longer than in other
heuristic algorithms. It is essential to aim at the acceleration of these algorithms.
The simplest solution appears to be descent to low-levelled programming,
although, this solution makes it difficult to put into practice genetic algorithm for
solution of different optimization problems, besides, the speed of working
increases only several times.

To accelerate repeatedly working of any algorithm it is necessary to paralle or
distribute it. Paralleling depends on the fact, that application which accomplishes
this algorithm has a lot of threads and each of them accomplishes the separate
kind of working. In order to parallel leads to acceleration of the algorithm, this
machine on which the application is run must have a lot of processors or multi-
threading processors, so that each thread can be run on a separate processor or
a core of processor. Distributing an algorithm consists in working which is
divided using lot of machines and each of them accomplishes its separate part.
These machines communicate with each other through the local net or the
Internet. Most often there is also the main server on which there are common
resources and which manages the work of the whole distributed system.
Distribution of algorithm has this advantage in comparison to its parallelization
that the number of machines in net is unlimited, however, in the multiprocessor
machine the more processors are is, the more complications occur with the
selection of the proper hardware to operate with any number of processors.
Therefore distribution of the algorithm not its parallelization was chosen.

Nowadays, there are a lot of technologies which assist in creation of
distributed systems. Some of them are independent of platform and
programming language as DCOM, CORBA, others are created for specific
programming language or platform as RMI mechanism in the Java technology
[2,3] or Remote mechanism in the .NET platform [4]. There is also a possibility
of using ordinary TCP/IP sockets but it would be work from basis in
coding/decoding of objects and its packetizing through net, so the best way is to
use the already checked solution. As a technology to work out the distributed
system, in this work Java and its mechanism of Remote Method Invocation
(RMI) were chosen. Although they say that Java, despite its improvements, is
still slower than C++, in fact, the speed of programs which are working on
Virtual Java Machine, systematically is approaching with its next versions to the
speed of programmes created in C++. There is also a possibility, that in the
future programmes in Java will be faster than those in C++. It can take place if
Virtual Java Machine is realized by hardware. Besides, Java is very convenient
in programming and object orientated in higher level than C++. Regarding this,
for accomplishment of this work this technology was chosen.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

Distributed genetic algorithm implementation by means ... 25

The presented distributed genetic algorithm took its pattern from the island
algorithms. They have a specific number of population processed on separated
clients’ machines which resemble islands. From time to time, the best
individuals exchange among islands. This system differs from a classical genetic
algorithm in such a way, that in this system each of the clients communicates
only with server, by sending there the best of individuals and taking individuals
which were left there by other clients. However, in the classical island algorithm
exchange of individuals takes place between clients-neighbours which are
organized in ring’s topology.

2. Working of local genetic algorithm

Genetic algorithm belongs to the group of heuristic algorithms [5], which do
not search whole space of solutions, but they work systematically going in some
direction or directions of searching, which in a particular moment seems to be
the most optimal. To the group of heuristic algorithms belong, among others.
Taboo search, ant’s algorithms, evolutionary algorithms. Most of these
techniques were created on the basis of observation of nature and man.
Evolutionary and genetic algorithms were created on the basis of transferring
nature evolution methods on the computer science area. The area of working
genetic algorithms is, among others, solving optimization problems.

The whole idea of this solution depends on the existence of population of
specific number of individuals and each of them has one or several
chromosomes which are a sequence of bits or other data representing single
genes, thanks to which they can intersect with each other and be mutated. Each
of the individuals presents a specific solution of the problem which is suitably
coded in a chromosome. Besides a chromosome, each of the individuals has a
function of the adaptation which determines, which of the individuals (solution
of the optimization problem) are better and which are worse. The individuals or
descendants of the individuals which have the best function of the adaptation,
have the highest chance of passage to the next epoch, however, the individuals
or descendants of the individuals which have a worse function of the adaptation
have small or no chances depending on a method of the selection which was
applied. Thanks to it every next epoch we have better and better collection of the
individuals — the evolution of whole population lasts. Thanks to this strategy,
separate solution is not favouring but a lot of best solutions that decrease chance
of falling in local optimum. This feature of genetic algorithm presents it in
favourable light in relation to other heuristic algorithms.

The local genetic algorithm that works on single client’s machine presented in
this work distributed system, works in the same way as a classical genetic
algorithm, with such a difference that sometimes the number of individuals in

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

26 Lukasz Maciura

population is higher, when taking the best individuals from server coming from
other clients. As a problem of genetic algorithm, necessary to test its working
searching for a maximum function of two variables which possess a lot of local
maxima [6] was chosen.

F(an/):2000_64'(Sin%+Sin%j—O.l85-((x—64)2 +(y—64)2),

For this problem it is easy to determine the function of adaptation, because it
can be written as a form of mathematical formula. A single individual of created
algorithm has one binary chromosome in which, there are coded two real values
which make solution to the problem. We assume that these values belong to the
range <0,128>. If we assum that ¢, — ¢, are genes of chromosome, so values x
and y [6] can form the equations:

xzic,.-2”'~l28,

i=1

y= ¢ -2"".128.
i=n+l1

As a selection technique to the next epoch of individuals designed for
reproduction the most popular method — roulette was applied. It depends on
application of virtual roulette in which each of the individuals has its own
segment proportional to the value of its function of adaptation. In practice there
are ranges of real values from the range <0,1>. Then, there is a drawing of a
value from this range and checking to what range it belongs. An individual
which is associated with this range is admitted to the reproduction. Depending
on this, if intersection follows or not, either it or its descendants come to the next
epoch.

Source code for selection of a number of the individual:

private int SelectIndividual()
{
double rand=Math.randomy();
int id_individual=0;
for(int i=0; i<individuals.size(); i++)
if(segments|i] > rand)
{
id_individual=i;
break;
}

return id_individual,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

Distributed genetic algorithm implementation by means ... 27

Reproduction occurs always on individuals sorted in this way If the
intersection occurs (the random value is smaller than probability of the
intersection) the descendants of the parents move to the next epoch. However, if
the intersection does not occur, parents move to the next epoch. If the
intersection occurs, the position of the intersection is randomized and the first of
the descendants receives a fragment of the chromosome from the beginning of
the position of the intersection from the first parent, however, from the second
parent it receives a fragment of the chromosome from the position of the
intersection to the end of the chromosome.

The example of the intersection:

1* parent: 00100111 |1101011101011111111000010100

2" parent: 11111000 | 0010101110011001110101101101

(“I” - position of the intersection which was chosen as a result of the
drawing).

As a result of the intersection, if it takes place, the following individuals arise:

1* descendant: 00100111 0010101110011001110101101101

2" descendant: 11111000 1101011101011111111000010100

This algorithm uses a selection of the parental pool and creates new
individuals, as long as the population of the new epoch files. With every
reproduction there is some probability that after carried or not carried out
operation of intersection mutation occurs.

The class “Family” which realise the genetic operators:

import java.util. Random;

public class Family
{
private Individual parentl;
private Individual parent2;
public Individual descendant];
public Individual descendant2;
private static double pintersection=0.3;
private static double pmutation=0.1;

public Family(Individual p1, Individual p2)
{

parentl=pl;

parent2=p2;

Operators();

}

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

28 Lukasz Maciura

public static void initp(double pi, double pm)
{

pintersection=pi;

pmutation=pm;

private void Operators()

{

if(Math.random()<pintersection)
{
Random rand=new Randomy();
int p=rand.nextInt(34)+1;
boolean [Jchromosomel=new boolean[36];
boolean [Jchromosome2=new boolean[36];
for(int i=0;i<p;i++)
{
chromosomel[i]=parent1.Gene(i);
chromosome2[i]=parent2.Gene(i);
}
for(int i=p;i<36;i++)
{
chromosomelli]=parent2.Gene(i);
chromosome2[i]=parent1.Gene(i);
}
descendantl=new Individual(chromosome1l);
descendant2=new Individual(chromosome2);

}

else

{
descendantl=parentl;
descendant2=parent2;

}
if(Math.random()<pmutation)
descendant1.Mutation();
if(Math.random()<pmutation)
descendant2.Mutation();

To recapitulate, the single genetic algorithm epoch which comes from this
work and works on the local machine operates as following:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

Distributed genetic algorithm implementation by means ... 29

1. Work out the value of the function of adaptation for each of the individuals
in the population.

2. If the best individual in this population is better than the best actual
individual from the whole algorithm, then choose it as the best and set a
flag which informs about this, that it has to be sent on the server.

3. Do genetic operators (intersection and mutation) as long as a new
population will create from nothing.

3. The description of the distributed genetic algorithm

The system created in this work is based on mutual communication of clients
— agents that accomplish the local genetic algorithm. This communication
consists in an exchange of the best individuals among the agents. Each of the
clients communicates with the server by means of mechanism of the Remote
Method Invocation — Java RMI. By means of an invocation of the appropriate
methods (functions) on the server, it can place there its best individuals as well
as take those left by other agents. Mechanism of serialization of objects in Java
technology allows sending in this way whole structures of objects which are
placed on RAM of the computer, not only to reference to them.

4. The description of a single client

The single client is realized by means of two threads

a) The thread which accomplishes an operation of genetic algorithm.

b) The thread which accomplishes a communication with the server and an

exchange of individuals.

Both threads communicate with each other by means of appropriate flags.
The division to the threads is necessary not to interrupt the working of genetic
algorithm during the communication with the server because it can work at this
time.

5. The description of the algorithm on client’s side

1. Client’s thread B is logging to the server, invoking the remote method:
int login(), and a name tag in the form of the number is assigned to it.

2. Thread B serially checks, by means of invoking on the server the remote
method: boolean permission(), which turns a value ‘true’ if the expected
number of logged clients to a server will be achieved. In such a case
algorithm comes to point 3.

3. To establish the individuals of the population in such a way that every now
and then a new best individual does not occur, thread A carries out a
specific number of genetic algorithm epochs, and at the same time updates
the best individual from the algorithm’s start.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

30 Lukasz Maciura

4. After carrying out a specific number of epochs, threads A and B start to
work simultaneously (Fig. 1).

THREAD B

e
=

THREAD A

The flag which
infaorms us that the hest
individual has to he send
tothe server
is 'true’
?

The flag of the ending
of the algotithm

i 'trug’
7

Send the best individual
by means of imioking the
method on the server:
woid sendiint ID,
Individual i)

and reset the flag which
informs us that the best

The flay of the get back individual hasto be sent

individuals from server
is true

Join nev individuals
Inaded in the list of

the new individuals
to population and Execute one epoch

reset the flag of the of genetic algorithrm.
get back individuals

neyele=1

1

Y

It the hest individual

in actual epoch iz

hetter than neycle++

the hest individual Inwvake the method on the
of all epochs, then SEMVEL

et it asthe best of Individual [] getiint ID)
all epochs and set when taking the table of the
the flag which hest individuals which come
informs usthat the from other clients.

best individual These individuals should be
should be sand to saved and flag of the get back
the server individuals should be sat.

[

Y

Put to sleep the thread
t0 10 millize conds

Invoke the method:

hoolean endconditioni)

Return value istrue
?

Set the flag
of the ending
of the algorithm

Fig. 1. The algorithm of the client

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

Distributed genetic algorithm implementation by means ... 31

6. The description of the server

The server is in this distributed system as a relay of the best individuals
among clients. It makes registered remote methods available for communication
with clients and transfer of objects between them. Besides remote methods it has
a table of individuals on which individuals from clients are saved. In this table
each of the clients has assigned its index received at the time of logging. Besides
this table there is also a matrix of value logical type, on which there is saved
which of the clients load an individual which comes from another specific client.
It will be needed so as a given client does not load repeatedly the same
individuals from the server which could overload the server and the whole
algorithm. The best global individual is also saved on the server. After the start
of the server, the number of the clients which should log in, should be inserted in
order to start the whole algorithm after a log in all clients.

7. The description of the remote methods

int login() — the method which is used to log in a client to the server and give to
it a name tag.

boolean permission() — the method which returns the value of the logical type
‘true’ if a client can start its algorithm and ‘false’ if not. It depends if the
established earlier number of the logged in clients is achieved and the flag ‘start’
is set.

boolean endcondition() — the method which returns the value ‘true’ if the
condition of the end of the algorithm was fulfilled. This is established on the
server and different conditions of the ending can be considered.

void send(int ID,Individual i) — the method which is used to send the best
individual to the server. It is placed in a table in a position determined by ID.
Additionally, there will be set suitable logical values in a matrix that specifies
which of the clients loads the individuals which comes from individual clients.
In the whole column there are set values ‘false’ because the new individual has
not been loaded by anybody yet (Table 1). If necessary there is also actualized
the best global individual on the server.

Table 1. The example of a content of this matrix after sending an individual by client no. 1

Individual 0 Individual 1 Individual 2 Individual 3
Client 0 true false false true
Client 1 true false true true
Client 2 false false false true
Client 3 false false true false

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

32 Lukasz Maciura

public void send(int ID,Individual i)

{
if(ID>=0 && ID<n_clients && !theend)
{
table of individuals[ID]=i;
for(int ind=0;ind<n_clients;ind++)
matrix of loading[ind][ID]=false;
i.Print();
if(i.Value() > threshold)
{
System.out.println("The end, MAX Value="+i.Value());
theend=true;
}
}
}

Individual [] get(int ID) — the method which is used to load the table of the
individuals saved by all other clients except for our own. ID is used to prevent
an individual from actual client and to set the suitable value in the matrix that
determines which of the individuals were loaded by specific clients. This matrix
is especially needed here because it enables us to load a table only of these
individuals which were not loaded by a given client (Table 2). Thanks to this, it
is not possible to load the same individuals by a client. The load is possible only
when an individual is on a given position.

Table 2. The example of a content of this matrix after loading an individual by client no. 1

Individual 0 Individual 1 Individual 2 Individual 3
Client 0 true false false true
Client 1 true true true true
Client 2 false true false true
Client 3 false true true false

The value ‘false’ means that a given individual has not been loaded by a
given client, yet, however, ‘true’ means that there are no individuals yet or a
given individual was loaded to a given client. Individual 0 comes from client 0,
individual 1 from client 1 etc. When a new individual is sent by client (e.g.
Client 1) in the whole column ‘Individual 1’ values ‘false’ are written.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

Distributed genetic algorithm implementation by means ... 33

public Individual [] get(int ID)

{

if(ID>=0 && ID<n_clients && !theend)

{

}

ArrayList list=new ArrayList();
for(int i=0;i<n_clients;i+ +)
{
if(Imatrix_of loading[ID][i])
{
list.add(table of individualsli]);
matrix_of loading[ID][i]=true;
}
}

Individual [Jtab=new Individual[list.size()];

for(int i=0;i<list.size();i+ +)
tab[i]=(Individual)list.get(i);

return tab;

else return null,

8. The algorithm on the server’s side

. Initiation of all the pools of the matrix that specify which of the clients

loads the individuals which comes from individual clients to ‘true’, in
order to block loading from the server because there has been no
individuals sent by clients, yet.

Loading of the required number of logged in clients.

Waiting as long as the required number of logged in clients will be
achieved.

Setting of the flag ‘start’ thanks to which the clients get to know through
the ‘permission’ method that they can start.

At this moment the main programme of a server does nothing, besides the
continuous checking if the condition of the ending of the algorithm is not
fulfilled. If it fulfils, the best individual is introduced and the flag ‘stop’ is
set. Remaining work is done by remote methods invoked by clients on the
server’s objects.

9. The system testing

To check to what extent the system increases the speed of finding the
optimum in the space of solutions series of experiment, which depends on

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

34 Lukasz Maciura

testing the working of an algorithm on many computers, was carried out and in
which the number of computers was constantly increasing. On the server, there
is a threshold. After crossing this threshold the algorithm finishes its working
and displays the time of working. Thanks to this, we can compare periods of
algorithm calculation for different number of clients which work on separate
computers. For a given number of computers, 5 tests were performed and the
median of working time was calculated.

1% series of the experiment:
Settings of the algorithm:

probability of intersection 0.6
probability of mutation 0.1
number of individuals 150
threshold of algorithm end 2107.417

Table 3. 1% series of experiments

Number of clients

Test 2 3 4 5
1 32.5s 1.2s 0.7s 1.11s
2 2.2s 4.32s 0.7s 0.7s
3 7.05s 1.31s 0.8s 0.61s

4 5.53s Is 2.22s Is
5 3.11s 0.91s 0.61s 0.61s
Median 5.53s 1.2s 0.7s 0.7s

As follows (Table 3) it is noticeable that when the number of clients working
on separate machines is increasing, the speed of finding of the optimum about
function of adaptation higher from the given threshold is also increasing.
However, it is noticeable that approximately for 4 or 5 computers the time of
finding the optimum is the same. It is due to the fact that at the beginning of the
algorithm working there is a big movement in web because very often a new
best individual is found. It slows down working of the algorithm, because
finding the optimum is short, so this delay is here very essential and it equalities
time of finding the optimum for 4-5 clients. In order to see the difference for a
larger number of computers we should extend the time of searching the space of
the solutions. It can be caused by establishing the threshold of ending the
algorithm which is adequately higher.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

Distributed genetic algorithm implementation by means ... 35

2" series of experiments:
Settings of the algorithm:

probability of intersection 0.6
probability of mutation 0.1
number of individuals 150
threshold of algorithm end 2107.4173

Table 4. 2™ series of experiments

The number of clients
Test 3 4 5 6
1 1.92s Is 0.52s 0.61s
2 0.72s 1.41s 0.91s 1.31s
3 19.42s 1.11s 0.7s 0.61s
4 16.41s 0.52s 2.02s 0.91s
5 25.05s 0.7s 1.31s 0.92s
Median 16.41s 1s 0.91s 0.91s

After this series of experiments (Table 4) it is noticeable that when the
number of computers is increasing finding the optimum speeds up, and when the
time of searching is short for a different number of clients, changes are invisible.

Conclusion

The distributed model of genetic algorithm in Java technology was
implemented. It accelerates finding of the optimum in the space of solutions.
The speed of searching increases along with the number of clients working on
separate machines.

In the implemented example, this algorithm solves the problem of searching
the maximum of the function which can be written by means of mathematical
formula, but nothing stands in the way to solve any other problems by this
algorithm. It is implemented by means of objected technique of Java language,
so it is easy to adapt through the modification of some classes.

Acknowledgments

I would like to express my thanks to Galina Setlak, D.Sc., Associate
Professor for helpful remarks.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/01/2026 21:41:27

36 Lukasz Maciura

References

[1]7 Schaefer R., Basics of global genetic optimization. UJ Krakéw, (2002).

[2] Horstmann C.S., Cornell G., Core Java 2. Helion, Gliwice, 1 (2003).

[3] Horstmann C.S., Cornell G., Core Java 2. Helion, Gliwice, II (2005).

[4] Troelsen A., C# language and the .NET platform. PWN, Warszawa, (2006).

[5] Rutkowski L., Methods and techniques of artificial intelligence. PWN Warszawa, (2006).
[6] Cytowski J., Genetic algorithms. Basis and application. PL] Warszawa, (1996).

http://www.tcpdf.org

