
Annales UMCS Informatica AI XI, 1 (2011) 15–22

DOI: 10.2478/v10065-011-0025-4

The database of interval orders difficult for the jump number

minimizing algorithms

Przemysław Krysztowiak1∗

1Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,

Chopina 12/18, 87-100 Toruń, Poland

Abstract – The problems of scheduling jobs on a single machine subject to precedence constraints

can often be modelled as the jump number problem for posets, where a linear extension of a given

partial order is to be found which minimizes the number of noncomparabilities. In this paper, we are

investigating a restricted class of posets, called interval orders, admitting approximation algorithms for

the jump number problem, in which the problem remains NP-complete. We have implemented three

known approximation algorithms for this problem, all of which are guaranteed to produce solutions

that are at most 50% worse than the optimal ones. More importantly, we have performed an exhaustive

search for particularly hard interval orders, which enforce the algorithms to generate orderings which

are exactly 50% worse than the optimal linear extensions. The main purpose of this paper is to present

the database of those problematic posets.

1 Introduction

The jump number problem for posets consists in determining a linear extension

with a minimum number of adjacent pairs that are incomparable in a given poset.

Possible applications of this NP-hard optimization problem can be found in the area of

task scheduling with precedence constraints. Three polynomial-time 3

2
-approximation

algorithms are known in a restricted class of interval orders, where the problem remains

NP-complete. These algorithms (published by Felsner [1], Sysło [2] and Mitas [3])

have been implemented and intensively tested. A database of hard instances has been

obtained on which the worst deviation from optimum is achieved in pessimistic runs of

each of the known algorithms. Our results are invaluable for researchers interested in

developing new algorithmic ideas, since a great amount of nontrivial sample posets can

∗pk@mat.umk.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

16 The database of interval orders difficult for the jump...

both help the attracted individuals come up with new concepts and restrain them from

following unfortunate thoughts. Moreover, our findings give themselves an interesting

insight into the problem.

The paper begins with a formal problem statement and an example application in

task scheduling. Then, the necessary background material on interval orders follows.

After that, we introduce our methodology of tackling the problem, and review the

approximation algorithms under investigation. Finally, our genetic procedure of ob-

taining particularly difficult interval orders is presented, together with an elaboration

concerning the database for storing those posets.

2 Problem statement

By (P,6P), or simply by P , we denote a finite poset of size |P | = n (recall that

a poset, or a partially ordered set, consists of a set P together with a binary relation

6P which is reflexive, antisymmetric, and transitive) . We write p <P q if p 6P q and

p 6= q. For any p ∈ P , Succ(p) = {q ∈ P : p <P q} denotes the set of successors of

p and Pred(p) = {q ∈ P : q <P p} denotes the set of predecessors of p. A family of

distinct successors sets in a poset (P,6P) is denoted by S = {Succ(p) : p ∈ P} and

a family of distinct predecessors sets is denoted by P = {Pred(p) : p ∈ P}. Min(P)

contains the minimal elements in (P,6P), i.e., the elements with no predecessors.

By a linear extension of a given poset we mean a total ordering of its elements,

L = x1, x2, . . . , xn, such that xi 6P xj implies i < j for all i, j. Two adjacent

elements xi, xi+1 in a given linear extension L of a poset P are separated with a

jump if x 66P xi+1; otherwise, they are separated with a bump. The jump number

problem consists of determining a linear extension L with the minimum number of

jumps, denoted by s(P) = min{s(L,P)|L is a linear extension of P}. Obviously, the

problem is equivalent to maximization of the number of bumps, i.e., to determining

b(P) = max{b(L,P)|L is a linear extension of P}, since for any linear extension L we

have s(L,P) + b(L,P) = n− 1. The problem of minimizing s(P) is NP-complete even

in the class of interval orders [3]. Notably, when only unit length intervals are allowed

in a poset representation, the problem admits polynomial-time solution [4].

3 Example application

One possible occurrence of the jump number problem can be found in the area of

task scheduling. Suppose a set of computer programs (or tasks) is to be sequenced

for an execution on a one-processor machine. Assume that some of these programs

require on input the results of other programs. It is easy to see that these precedence

constraints define a partial order on the set of involved computer programs to be

scheduled. Additionally, suppose that two of the tasks, expected to be run one after

another, are sequenced in different order. This means that the required results of the

first task need to be stored (e.g., in a database) so that they are available later when

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

Przemysław Krysztowiak 17

they are needed for the second task. Since every database access has a fixed cost, we are

interested in a schedule for all the tasks that minimizes the number of incomparabilities

against the resulting partial order. In this way a jump-optimal linear extension can be

seen as the most efficient sequence of executing all the tasks.

4 Interval orders

A poset (P,6P) is an interval order if a bijective mapping exists between its elements

and closed intervals on the real line, P ↔ {Ix = [l(x), r(x)]}x∈P , satisfying x 6P y

if and only if r(x) < l(y) (l(x) and r(x) are understood respectively as left and right

endpoint of an interval corresponding to x ∈ P). It is well known that interval orders

can be characterized as posets without two independent 2-element chains as induced

subposet. Moreover, in the case of interval posets, (P,⊂) and (S,⊂) are linear orders.

The proofs of these results, as well as the additional background material on interval

orders, can be found in the monograph [5] (see also [3]).

The above facts justify a canonical representation of a given interval order P : sort

the distinct successors sets by inclusion, Succ1 ⊇ Succ2 ⊇ . . . ⊇ Succm = ∅, and sort

the distinct predecessors sets by inclusion ∅ ⊆ Pred1 ⊆ Pred2 ⊆ . . . ⊆ Predm. Assign

to every x ∈ P the left endpoint l(x) = i− 1 such that Predi = Pred(x) and the right

endpoint r(x) = j − 1 such that Succj = Succ(x). In this way a family of canonical

intervals is obtained, which are further used in the Sysło and Mitas algorithms. In

the Mitas algorithm canonical intervals are written into a square table: an interval

[l(x), r(x)] is put into a cell in row l(x) and column r(x). Note that when more poset

elements are assigned, the same interval, respective cell contains them all. The size

m of the table is called a magnitude of an interval order and is equal to the number

of different successors sets, i.e., m = |P| = |S|. On the other hand, in the algorithm

of Sysło there is produced an arc diagram whose arcs are initialized with canonical

intervals. We illustrate these two representations in Fig. 1, where an examplary poset

is additionally pictured as the well-known Hasse diagram. The algorithms of Felsner,

Sysło and Mitas are reviewed in more details in the subsequent sections.

Fig. 1. An examplary interval poset represented in the three ways: a Hasse

diagram, an arc diagram, and a table.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

18 The database of interval orders difficult for the...

5 Methodology

We are now ready to sketch the three known algorithms which are the subject of

our considerations and were used to obtain the difficult instances. After a short intro-

duction of tested procedures we describe our methodology of obtaining those interval

orders where the approximation ratio is stretched to maximum.

5.1 The algorithm of Felsner

The algorithm proposed by Felsner [1] is a direct extension of the following generic

greedy algorithm: whenever possible, choose a minimal predecessor of a previously

selected element.

We define the set SMin(P) = {x ∈ P : Succ(y) ⊆ Succ(x) for all y ∈ P} of poset

elements with the greatest set of successors. As the reader will note, SMin(P) ⊆

Min(P). The algorithm is based on the observation that an optimal linear extension

always exists which begins with an element from this set. The Felsner algorithm builds

a linear extension greedily, applying the following rules as long as the input poset is

nonempty:

• If there are no successors of the previously selected element which are mini-

mal, then choose an element from SMin(P), add it to the generated linear

extension L and remove it from P .

• If there are minimal successors of the previously added element, but they are

not in SMin(P), then choose one of them, add it to L and remove it from P .

• If there are successors of the previously added element in SMin(P), then

choose one of them, add it to L and remove it from P .

5.2 The algorithm of Sysło

Similarly to the Felsner algorithm, the Sysło algorithm ([2, 6]) realizes a greedy

strategy. However, instead of a set representation of an interval order, directed graphs

are used. There are two types of arcs in such a digraph. The poset arcs correspond

to the poset elements whereas the remaining ones (presented with dashed lines in the

pictures) are added to keep the relations along paths in a digraph. An arc diagram

for an input interval order P is based on the canonical intervals representing P . In

order to obtain this representation for a given interval poset, we proceed as described

in the canonicalization procedure, but a copy of the whole poset is added to S. As

a result, right endpoints of intervals are increased by one and there are no one-point

(degenerated) intervals. The set of vertices is taken as V = {0, 1, . . . ,m}, where m =

|S| = |P|, and for every poset element x we add an arc ax = (l(x), r(x)) to the set

A of the arcs. Additionally, dummy arcs are added, (i, i + 1) for i = 1, 2, . . . ,m − 2,

whenever (i, i + 1) is not a poset arc. Let us denote by h, t : A → V the incidence

mappings of an arc diagram, pointing to the head and to the tail of an arc respectively.

The algorithm successively finds special paths in the arc diagram and removes respec-

tive elements, augumenting the generated linear extension. There are two important

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

Przemysław Krysztowiak 19

types of greedy paths, introduced by Sysło and accompanied with the proof that there

is always an optimal linear extension which starts with one of such paths. In this way

a generic greedy algorithm is improved because the search space becomes restricted.

A greedy path π = (x1, x2, . . . , xf) in a canonical arc diagram for an interval order is

defined by the following predicates:

• no h(xi), i = 1, 2, . . . , f − 1, is a head of an arc different from xi and either P

does not contain other elements than those in π or there is an arc y (possibly

a dummy one) such that y 6= xf and h(y) = h(xf),

• each of the arcs xi, i = 1, 2, . . . , f , is a poset arc,

• canonical intervals of P corresponding to all arcs of the path are of length 1

(all but possibly the last one of them).

A strongly greedy path additionally either terminates in the sink of the diagram or h(π)

is a head of a poset arc b, b 6= xf , such that no vertex of {0, 1, . . . , t(b)} is incident with

a dummy arc. If a greedy path is not strongly greedy and it crosses a vertex which is

a tail of a dummy arc, but not a head of a dummy arc, then we call it a semi-strongly

greedy path.

We are now ready to present the algorithm of Sysło: Determine all greedy paths

in the arc diagram for P . If a strongly-greedy path exists, take consecutive elements

from this path to L, and remove this path from the diagram. Otherwise, choose any

of semi-strongly greedy paths and proceed similarly.

5.3 The algorithm of Mitas

During the execution of the Mitas algorithm a table representation of a given interval

order (P,6P) is exploited. The columns of this table are numbered from 0 to m − 1

and the same concerns the rows, where m = |S| = |P| is a magnitude of P . To get

an idea of reading a linear extension from the table, it is useful to follow the basic

algorithm from the Mitas paper with an examplary poset. A linear extension can be

generated according to the following natural rules: add to L all elements from column

0, followed by any element from row 1. Then, take all the remaining elements from

column 1, followed by any element from row 2. Continue this procedure until the whole

table becomes empty.

Observe that this simple procedure does not necessarily maximize bumps in the gen-

erated linear extension. A more involved variant of the algorithm reduces the task to

the cardinality matching problem. We now bring in the crucial steps of this reduction.

First, a graph of cells is defined, in which the vertices correspond to nonempty table

cells, and the edges join neighbouring nonempty cells lying in the same row or column.

We call a component C of this graph unsaturated if none of its vertices is positioned on

the boundary of the table, nor any cell of C contains a multiple poset element, nor C

itself contains a cycle. It has been shown by Mitas that the unsaturated components

constitute the core of the problem. Next, following Mitas, a graph of components is

constructed, where unsaturated components C and D are connected with an edge if C

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

20 The database of interval orders difficult for the...

covers the i-th column and D covers the i-th row or (i+1)-th row of the table. A max-

imum matching determined on this graph is interpreted as follows: two vertices (i.e.,

unsaturated components) which are connected by a matched edge can be maintained

with one lost bump, whereas unmatched vertices (components) have to be maintained

with one lost bump for each of them. The detailed procedure of obtaining a linear

extension from the table can be found in the original article of Mitas [3].

5.4 Searching for hard instances

We are now in the position to elucidate how the main aim of this work has been

achieved. Our objective was to determine a collection of difficult interval orders, en-

forcing the algorithms of Felsner, Sysło and Mitas to produce orderings which are

exactly 50% worse than optimal linear extensions. We have decided to adapt the ge-

netic algorithm for this purpose. Whenever a hard poset of size n needs to be found,

a chromosome consists of a collection of n intervals. The crossover operator mixes two

chromosomes and produces two new chromosomes. This procedure is realized as fol-

lows: randomize an integer r in range 1 to n; the first r intervals of the first parent R1

are copied to a newly created child C1, and the rest of intervals from R1 are copied to

a newly created child C2. Then, the intervals (r + 1) to n in R2 are copied to C1 and

analogously the missing intervals, from (r+1) to n in R1, are copied to C2. In the mu-

tation procedure a randomly chosen interval is removed and another one is produced.

We have tried to generate the random intervals from both the uniform distribution and

the exponential distributions. It turned out that the choice of probability distribution

is irrelevant for our purposes.

In a discussion concerning the time required to obtain the most difficult interval or-

ders it is necessary to realize how the optimized objective function works. It is natural

to define this function (also called the fitness function) in a way that it compares a

solution obtained with an approximation algorithm to an optimal jump number and

calculates an approximation ratio on actual interval order represented by the chromo-

some. Obviously, it needs to be executed after each application of mutation or crossover.

Thankfully, a full inspection of solutions restricted to all semi-strongly greedy linear

extensions can be performed realtively quickly. Note that there are, in fact, three sim-

ilar fitness functions, each of which benchmarks another algorithm. In practice, we

were able to obtain a 50%-deviated poset of the fixed size n 6 30 in about half an hour

on a 3GHz home PC when either the algorithm of Sysło or the algorithm of Felsner

was inspected. The Mitas algorithm requires more time when n > 20 due to its com-

putational complexity (computing the maximum matching is the most expensive part

of this procedure). All algorithms considered in this paper have been implemented in

the C# programming language.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

Przemysław Krysztowiak 21

6 The database of interval orders

The difficult interval orders found by our algorithm are stored in a dedicated data-

base, which has been developed according to the following considerations. A single

table is enough to accommodate all the posets. An interval order can be represented

by a collection of canonical intervals defininig the posets, which are stored as one

string of characters, starting with one number n (the poset size), followed by the con-

secutive intervals (each of which consists of two natural numbers). Therefore, the

field INTERVALS[NVARCHAR(MAX)] contains the concatenation of these quantities and its

content is sufficient to restore a poset. It is also useful to keep the poset size in a

separate field SIZE[INT] so as to serve requests for posets of a given size with ease.

Besides, an optimal linear extension is stored along with its jump number, as well

as the best solution known so far (which can be generated for instance with the Mi-

tas algorithm). We therefore have the following four fields: OPT_JUMP_NUMBER[INT],

OPT_LIN_EXT[NVARCHAR(MAX)], BEST_JUMP_NUMBER[INT], BEST_LIN_EXT[NVARCHAR(MAX)]. In

addition, it is useful to remember which of the algorithms results in the 50%-deviated

linear extension.

We also find it is useful to have twofold interface to the database, which is both visual

and programmatic. On the visual side, available through a dedicated web page, all the

hard interval orders stored in the database can be seen and downloaded. A user can

look at the intervals constituting a poset, together with two images: a canonical arc

diagram, and a table. On the programmatic side, a poset can be requested of supplied

size, which is difficult for the algorithms known so far. The requested size can exceed

the size of the biggest poset stored in the database. In such a case, existing interval

orders are composed (by serial composition) and a big instance is returned to the user.

Serial composition of canonical interval order can be realized by placing the intervals

of Q just after the rightmost interval of P.

The database of difficult posets has been published on the author’s website [7] so

that everyone interested in developing new algorithms has access to the worst posets,

troublesome for the present algorithms. A tiny excerpt of the posets stored in this

database can be seen in Fig. 2. The first of the interval orders admits a linear extension

with 2 jumps whereas the Felsner algorithm generates a solution with 3 jumps. For the

second of the shown posets a linear extension with 4 jumps is possible, but the Sysło

algorithm finds one with 6 jumps. The last instance results in 3 jumps when the Mitas

algorithm is run, whereas a solution with 2 jumps can be found.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

22 The database of interval orders difficult for the...

Fig. 2. Examplary difficult posets for the algorithms of Felsner, Sysło, and

Mitas, respectively.

7 Future work

A generator of interval orders which behave particularly bad has been introduced

and a vast collection of difficult posets has been obtained that are useful for researchers

interested in developing new algorithms for the jump number problem. In addition,

our knowledge of existing algorithms has been broadened. In the future the database

might be re-designed to accommodate arbitrary posets and not just interval orders.

Moreover, our database could be enhanced with a possibility to assimilate the posets

supplied by the users.

References

[1] Felsner S., A 3/2-approximation algorithm for the jump number of interval orders, Order 6 (1990):

325.

[2] Sysło M.M., The jump number problem on interval orders: A 3/2 approximation algorithm, Dis-

crete Mathematics 144 (1995): 119.

[3] Mitas J., Tackling the jump number of interval orders, Order 8 (1991): 115.

[4] Arnim A., Higuera C., Computing the jump number on semi-orders is polynomial, Discrete Applied

Mathematics 51 (1994): 219.

[5] Fishburn P.C., Interval orders and interval graphs. A study of partially ordered sets, Wiley, New

York (1985).

[6] Sysło M.M., An algorithm for solving the jump number problem, Discrete Mathematics 72 (1988):

337.

[7] Krysztowiak P., http://www.mat.umk.pl/~nb/

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

