Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

Annales UMCS
50 G Informatica
L7 :“;o Annales UMCS Informatica AI XI, 1 (2011) 15-22 Lublin-Poloni
g % DOI: 10.2478 /v10065-011-0025-4 ublin-rolonia
3) Sectio Al
2 \® LA
Clgypeastt

http://www.annales.umcs.lublin.pl/

The database of interval orders difficult for the jump number
minimizing algorithms

Przemystaw Krysztowiak!*

! Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruri, Poland

Abstract — The problems of scheduling jobs on a single machine subject to precedence constraints
can often be modelled as the jump number problem for posets, where a linear extension of a given
partial order is to be found which minimizes the number of noncomparabilities. In this paper, we are
investigating a restricted class of posets, called interval orders, admitting approximation algorithms for
the jump number problem, in which the problem remains NP-complete. We have implemented three
known approximation algorithms for this problem, all of which are guaranteed to produce solutions
that are at most 50% worse than the optimal ones. More importantly, we have performed an exhaustive
search for particularly hard interval orders, which enforce the algorithms to generate orderings which
are exactly 50% worse than the optimal linear extensions. The main purpose of this paper is to present

the database of those problematic posets.

1 Introduction

The jump number problem for posets consists in determining a linear extension
with a minimum number of adjacent pairs that are incomparable in a given poset.
Possible applications of this NP-hard optimization problem can be found in the area of
task scheduling with precedence constraints. Three polynomial-time %—approximation
algorithms are known in a restricted class of interval orders, where the problem remains
NP-complete. These algorithms (published by Felsner [1], Systo [2] and Mitas [3])
have been implemented and intensively tested. A database of hard instances has been
obtained on which the worst deviation from optimum is achieved in pessimistic runs of
each of the known algorithms. Our results are invaluable for researchers interested in
developing new algorithmic ideas, since a great amount of nontrivial sample posets can

*pk@mat.umk.pl

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/01/2026 07:01:21

16

The database of interval orders difficult for the jump...

both help the attracted individuals come up with new concepts and restrain them from
following unfortunate thoughts. Moreover, our findings give themselves an interesting
insight into the problem.

The paper begins with a formal problem statement and an example application in
task scheduling. Then, the necessary background material on interval orders follows.
After that, we introduce our methodology of tackling the problem, and review the
approximation algorithms under investigation. Finally, our genetic procedure of ob-
taining particularly difficult interval orders is presented, together with an elaboration
concerning the database for storing those posets.

2 Problem statement

By (P,<p), or simply by P, we denote a finite poset of size |P| = n (recall that
a poset, or a partially ordered set, consists of a set P together with a binary relation
<p which is reflexive, antisymmetric, and transitive) . We write p <p ¢ if p <p g and
p # q. For any p € P, Succ(p) = {q € P : p <p q} denotes the set of successors of
p and Pred(p) = {q € P : q <p p} denotes the set of predecessors of p. A family of
distinct successors sets in a poset (P, <p) is denoted by S = {Succ(p) : p € P} and
a family of distinct predecessors sets is denoted by P = {Pred(p) : p € P}. Min(P)
contains the minimal elements in (P, <p), i.e., the elements with no predecessors.

By a linear extension of a given poset we mean a total ordering of its elements,
L = z1,29,...,2y, such that z; <p x; implies ¢ < j for all 4,5. Two adjacent
elements x;,z;11 in a given linear extension L of a poset P are separated with a
gump if x €p x;41; otherwise, they are separated with a bump. The jump number
problem consists of determining a linear extension L with the minimum number of
jumps, denoted by s(P) = min{s(L, P)|L is a linear extension of P}. Obviously, the
problem is equivalent to maximization of the number of bumps, i.e., to determining
b(P) = max{b(L, P)|L is a linear extension of P}, since for any linear extension L we
have s(L, P) +b(L, P) = n — 1. The problem of minimizing s(P) is NP-complete even
in the class of interval orders [3]. Notably, when only unit length intervals are allowed
in a poset representation, the problem admits polynomial-time solution [4].

3 Example application

One possible occurrence of the jump number problem can be found in the area of
task scheduling. Suppose a set of computer programs (or tasks) is to be sequenced
for an execution on a one-processor machine. Assume that some of these programs
require on input the results of other programs. It is easy to see that these precedence
constraints define a partial order on the set of involved computer programs to be
scheduled. Additionally, suppose that two of the tasks, expected to be run one after
another, are sequenced in different order. This means that the required results of the
first task need to be stored (e.g., in a database) so that they are available later when

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

Przemystaw Krysztowiak

they are needed for the second task. Since every database access has a fixed cost, we are
interested in a schedule for all the tasks that minimizes the number of incomparabilities
against the resulting partial order. In this way a jump-optimal linear extension can be
seen as the most efficient sequence of executing all the tasks.

4 Interval orders

A poset (P, <p) is an interval order if a bijective mapping exists between its elements
and closed intervals on the real line, P « {I, = [l(x),r(z)]}.cp, satisfying z <p y
if and only if r(z) < I(y) (I(x) and r(z) are understood respectively as left and right
endpoint of an interval corresponding to x € P). It is well known that interval orders
can be characterized as posets without two independent 2-element chains as induced
subposet. Moreover, in the case of interval posets, (P, C) and (S, C) are linear orders.
The proofs of these results, as well as the additional background material on interval
orders, can be found in the monograph [5] (see also [3]).

The above facts justify a canonical representation of a given interval order P: sort
the distinct successors sets by inclusion, Succ; O Sucey D ... D Suce,, = 0, and sort
the distinct predecessors sets by inclusion () C Pred; C Preds, C ... C Pred,,. Assign
to every z € P the left endpoint I(z) = ¢ — 1 such that Pred; = Pred(z) and the right
endpoint r(z) = j — 1 such that Succ; = Suce(x). In this way a family of canonical
intervals is obtained, which are further used in the Systo and Mitas algorithms. In
the Mitas algorithm canonical intervals are written into a square table: an interval
[I(x),r(x)] is put into a cell in row I(z) and column 7(x). Note that when more poset
elements are assigned, the same interval, respective cell contains them all. The size
m of the table is called a magnitude of an interval order and is equal to the number
of different successors sets, i.e., m = |P| = |S|. On the other hand, in the algorithm
of Systo there is produced an arc diagram whose arcs are initialized with canonical
intervals. We illustrate these two representations in Fig. 1, where an examplary poset
is additionally pictured as the well-known Hasse diagram. The algorithms of Felsner,
Systo and Mitas are reviewed in more details in the subsequent sections.

12
11

9,10

1
0 1 2 3 4 5 6 7 0

Fig. 1. An examplary interval poset represented in the three ways: a Hasse
diagram, an arc diagram, and a table.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/01/2026 07:01:21

18

The database of interval orders difficult for the...

5 Methodology

We are now ready to sketch the three known algorithms which are the subject of
our considerations and were used to obtain the difficult instances. After a short intro-
duction of tested procedures we describe our methodology of obtaining those interval
orders where the approximation ratio is stretched to maximum.

5.1 The algorithm of Felsner

The algorithm proposed by Felsner [1] is a direct extension of the following generic
greedy algorithm: whenever possible, choose a minimal predecessor of a previously
selected element.

We define the set SMin(P) = {z € P : Succ(y) C Suce(z) for all y € P} of poset
elements with the greatest set of successors. As the reader will note, SMin(P) C
Min(P). The algorithm is based on the observation that an optimal linear extension
always exists which begins with an element from this set. The Felsner algorithm builds
a linear extension greedily, applying the following rules as long as the input poset is
nonempty:

e If there are no successors of the previously selected element which are mini-
mal, then choose an element from SMin(P), add it to the generated linear
extension L and remove it from P.

e If there are minimal successors of the previously added element, but they are
not in SMin(P), then choose one of them, add it to L and remove it from P.

e If there are successors of the previously added element in SMin(P), then
choose one of them, add it to L and remove it from P.

5.2 The algorithm of Systo

Similarly to the Felsner algorithm, the Systo algorithm ([2, 6]) realizes a greedy
strategy. However, instead of a set representation of an interval order, directed graphs
are used. There are two types of arcs in such a digraph. The poset arcs correspond
to the poset elements whereas the remaining ones (presented with dashed lines in the
pictures) are added to keep the relations along paths in a digraph. An arc diagram
for an input interval order P is based on the canonical intervals representing P. In
order to obtain this representation for a given interval poset, we proceed as described
in the canonicalization procedure, but a copy of the whole poset is added to S. As
a result, right endpoints of intervals are increased by one and there are no one-point
(degenerated) intervals. The set of vertices is taken as V' = {0,1,...,m}, where m =
IS| = |P|, and for every poset element = we add an arc a, = (I(z),r(x)) to the set
A of the arcs. Additionally, dummy arcs are added, (i, + 1) for i = 1,2,...,m — 2,
whenever (4,7 + 1) is not a poset arc. Let us denote by h,t : A — V the incidence
mappings of an arc diagram, pointing to the head and to the tail of an arc respectively.

The algorithm successively finds special paths in the arc diagram and removes respec-
tive elements, augumenting the generated linear extension. There are two important

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

Przemystaw Krysztowiak

types of greedy paths, introduced by Systo and accompanied with the proof that there
is always an optimal linear extension which starts with one of such paths. In this way
a generic greedy algorithm is improved because the search space becomes restricted.

A greedy path m = (x1,x2,...,xf) in a canonical arc diagram for an interval order is
defined by the following predicates:

e no h(x;),i=1,2,...,f—1, is a head of an arc different from z; and either P
does not contain other elements than those in 7 or there is an arc y (possibly
a dummy one) such that y # =, and h(y) = h(xy),

e cach of the arcs z;,1 =1,2,..., f, is a poset arc,

e canonical intervals of P corresponding to all arcs of the path are of length 1
(all but possibly the last one of them).

A strongly greedy path additionally either terminates in the sink of the diagram or h(m)
is a head of a poset arc b, b # z, such that no vertex of {0,1,...,¢(b)} is incident with
a dummy arc. If a greedy path is not strongly greedy and it crosses a vertex which is
a tail of a dummy arc, but not a head of a dummy arc, then we call it a semi-strongly
greedy path.

We are now ready to present the algorithm of Systo: Determine all greedy paths
in the arc diagram for P. If a strongly-greedy path exists, take consecutive elements
from this path to L, and remove this path from the diagram. Otherwise, choose any
of semi-strongly greedy paths and proceed similarly.

5.3 The algorithm of Mitas

During the execution of the Mitas algorithm a table representation of a given interval
order (P,<p) is exploited. The columns of this table are numbered from 0 to m — 1
and the same concerns the rows, where m = |S| = |P| is a magnitude of P. To get
an idea of reading a linear extension from the table, it is useful to follow the basic
algorithm from the Mitas paper with an examplary poset. A linear extension can be
generated according to the following natural rules: add to L all elements from column
0, followed by any element from row 1. Then, take all the remaining elements from
column 1, followed by any element from row 2. Continue this procedure until the whole
table becomes empty.

Observe that this simple procedure does not necessarily maximize bumps in the gen-
erated linear extension. A more involved variant of the algorithm reduces the task to
the cardinality matching problem. We now bring in the crucial steps of this reduction.
First, a graph of cells is defined, in which the vertices correspond to nonempty table
cells, and the edges join neighbouring nonempty cells lying in the same row or column.
We call a component C' of this graph unsaturated if none of its vertices is positioned on
the boundary of the table, nor any cell of C' contains a multiple poset element, nor C
itself contains a cycle. It has been shown by Mitas that the unsaturated components
constitute the core of the problem. Next, following Mitas, a graph of components is
constructed, where unsaturated components C' and D are connected with an edge if C'

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/01/2026 07:01:21

20

The database of interval orders difficult for the...

covers the i-th column and D covers the i-th row or (i+ 1)-th row of the table. A max-
imum matching determined on this graph is interpreted as follows: two vertices (i.e.,
unsaturated components) which are connected by a matched edge can be maintained
with one lost bump, whereas unmatched vertices (components) have to be maintained
with one lost bump for each of them. The detailed procedure of obtaining a linear
extension from the table can be found in the original article of Mitas [3].

5.4 Searching for hard instances

We are now in the position to elucidate how the main aim of this work has been
achieved. Our objective was to determine a collection of difficult interval orders, en-
forcing the algorithms of Felsner, Systo and Mitas to produce orderings which are
exactly 50% worse than optimal linear extensions. We have decided to adapt the ge-
netic algorithm for this purpose. Whenever a hard poset of size n needs to be found,
a chromosome consists of a collection of n intervals. The crossover operator mixes two
chromosomes and produces two new chromosomes. This procedure is realized as fol-
lows: randomize an integer r in range 1 to n; the first r intervals of the first parent R1
are copied to a newly created child C'1, and the rest of intervals from R1 are copied to
a newly created child C2. Then, the intervals (r 4+ 1) to n in R2 are copied to C'1 and
analogously the missing intervals, from (r+1) to n in R1, are copied to C2. In the mu-
tation procedure a randomly chosen interval is removed and another one is produced.
We have tried to generate the random intervals from both the uniform distribution and
the exponential distributions. It turned out that the choice of probability distribution
is irrelevant for our purposes.

In a discussion concerning the time required to obtain the most difficult interval or-
ders it is necessary to realize how the optimized objective function works. It is natural
to define this function (also called the fitness function) in a way that it compares a
solution obtained with an approximation algorithm to an optimal jump number and
calculates an approximation ratio on actual interval order represented by the chromo-
some. Obviously, it needs to be executed after each application of mutation or crossover.
Thankfully, a full inspection of solutions restricted to all semi-strongly greedy linear
extensions can be performed realtively quickly. Note that there are, in fact, three sim-
ilar fitness functions, each of which benchmarks another algorithm. In practice, we
were able to obtain a 50%-deviated poset of the fixed size n < 30 in about half an hour
on a 3GHz home PC when either the algorithm of Systo or the algorithm of Felsner
was inspected. The Mitas algorithm requires more time when n > 20 due to its com-
putational complexity (computing the maximum matching is the most expensive part
of this procedure). All algorithms considered in this paper have been implemented in
the C# programming language.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

Przemystaw Krysztowiak

6 The database of interval orders

The difficult interval orders found by our algorithm are stored in a dedicated data-
base, which has been developed according to the following considerations. A single
table is enough to accommodate all the posets. An interval order can be represented
by a collection of canonical intervals defininig the posets, which are stored as one
string of characters, starting with one number n (the poset size), followed by the con-
secutive intervals (each of which consists of two natural numbers). Therefore, the
field INTERVALS [NVARCHAR (MAX)] contains the concatenation of these quantities and its
content is sufficient to restore a poset. It is also useful to keep the poset size in a
separate field SIZE[INT] so as to serve requests for posets of a given size with ease.
Besides, an optimal linear extension is stored along with its jump number, as well
as the best solution known so far (which can be generated for instance with the Mi-
tas algorithm). We therefore have the following four fields: OPT_JUMP_NUMBER[INT],
OPT_LIN_EXT[NVARCHAR (MAX)], BEST_JUMP_NUMBER[INT], BEST_LIN_EXT[NVARCHAR(MAX)]. In
addition, it is useful to remember which of the algorithms results in the 50%-deviated
linear extension.

We also find it is useful to have twofold interface to the database, which is both visual
and programmatic. On the visual side, available through a dedicated web page, all the
hard interval orders stored in the database can be seen and downloaded. A user can
look at the intervals constituting a poset, together with two images: a canonical arc
diagram, and a table. On the programmatic side, a poset can be requested of supplied
size, which is difficult for the algorithms known so far. The requested size can exceed
the size of the biggest poset stored in the database. In such a case, existing interval
orders are composed (by serial composition) and a big instance is returned to the user.
Serial composition of canonical interval order can be realized by placing the intervals
of Q just after the rightmost interval of P.

The database of difficult posets has been published on the author’s website [7] so
that everyone interested in developing new algorithms has access to the worst posets,
troublesome for the present algorithms. A tiny excerpt of the posets stored in this
database can be seen in Fig. 2. The first of the interval orders admits a linear extension
with 2 jumps whereas the Felsner algorithm generates a solution with 3 jumps. For the
second of the shown posets a linear extension with 4 jumps is possible, but the Systo
algorithm finds one with 6 jumps. The last instance results in 3 jumps when the Mitas
algorithm is run, whereas a solution with 2 jumps can be found.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 07:01:21

22 The database of interval orders difficult for the...
1(x)
3 [6]
2 5
1] 3|4
0‘ 1]2
0 1 2 3 1
1(%)
; 8 [12]
7 11
6 10
2 10 5 5
4 8
3 6 7
13 12) T
1 ‘ 3
4 9 11 E
5 0 1 2 3 4 5 6 7 8 1%
1(x)
5 [7]
4 6
2 4 6 3 E
2 4
1 7 1 3
of1]2
3 5 0 1 2 3 4 5 1

Fig. 2. Examplary difficult posets for the algorithms of Felsner, Systo, and
Mitas, respectively.

7 Future work

A generator of interval orders which behave particularly bad has been introduced
and a vast collection of difficult posets has been obtained that are useful for researchers
interested in developing new algorithms for the jump number problem. In addition,
our knowledge of existing algorithms has been broadened. In the future the database
might be re-designed to accommodate arbitrary posets and not just interval orders.
Moreover, our database could be enhanced with a possibility to assimilate the posets
supplied by the users.

References

[1

Felsner S., A 3/2-approzimation algorithm for the jump number of interval orders, Order 6 (1990):
325.

Systo M.M., The jump number problem on interval orders: A 8/2 approzimation algorithm, Dis-
crete Mathematics 144 (1995): 119.

[3] Mitas J., Tackling the jump number of interval orders, Order 8 (1991): 115.

[4] Arnim A., Higuera C., Computing the jump number on semi-orders is polynomial, Discrete Applied
Mathematics 51 (1994): 219.

Fishburn P.C., Interval orders and interval graphs. A study of partially ordered sets, Wiley, New
York (1985).

[6] Systo M.M., An algorithm for solving the jump number problem, Discrete Mathematics 72 (1988):
337.

Krysztowiak P., http://www.mat.umk.pl/ nb/

[2

[5

[7

http://www.tcpdf.org

