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Abstract

In this paper we propose an algorithm for computing large primes p and q such that q divides

p6 + p5 + p4 + p3 + p2 + p + 1 or p6 − p5 + p4 − p3 + p2 − p + 1. Such primes are the key

parameters for the cryptosystem based on the 7th order characteristic sequences.

1. Introduction

Let Φn be the nth cyclotomic polynomial; this is a unique monic polynomial

whose roots are the primitive nth roots of unity. Algorithms for computing

primes p and q such that q divides Φn(p) play an important role in cryptography.

They are utilized for computing key parameters in cryptosystems which work

in an extension of finite field Fp. These systems reduce representations of

finite field elements by representing them with the coefficients of their minimal

polynomials. The examples of such systems are XTR [1], GH [2], [3], GG [4].

In [5] a general class of cryptographic schemes based on nth order characteristic

sequences generated by an LFSR has been proposed. In order to generate key

parameters for the cryptosystem based on nth order characteristic sequences
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one should find a large prime p and an element α ∈ Fpn of order q dividing

Φn(p). One can determine whether or not the element α has the desired order

if one knows the primes q and p such that q divides Φn(p). A method for

finding the element α has not been given in [5]. From the security point of

view it is essential to find a prime p such that Φn(p) has a large prime factor

q having at least 160 bits to make DLP Problem in the subgroup of order q of

Fpn intractable. Moreover, one should find a prime p such that n log p ≈ 2048

to obtain security equivalent to factoring a positive integer having 2048 bits.

We propose a new method of finding primes p and q such that q divides

Φ7(p) or Φ14(p). In particular, we present a new, deterministic algorithm for

finding roots of polynomials Φ7(x) or Φ14(x) (mod q). Our method of finding

the roots reduces to performing only exponentiations, multiplications and com-

puting inversion modulo q. Achieving the described goals is made possible by

generating the prime q, which is a norm of an algebraic integer of ring of some

cubic algebraic number field.

The rest of this paper is organized as follows. In Section 2 we introduce

the notation used throughout the paper. Section 3 presents our algorithm. In

Section 4 we prove the correctness of the algorithm.

2. Notations

Throughout this paper, K = Q(η1) = {x+yη1+zη2 : x, y, z ∈ Q} denotes the

cubic number field with the ring of integers OK = {a+ bη1 + cη2 : a, b, c ∈ Z}.
Let ξ7 be a primitive 7th root of unity. The field K is obtained from Q by

adjoining η1 = ξ7 + ξ−1
7 the root of irreducible over the rationals polynomial

f(x) = x3 + x2 − 2x − 1. We will denote by η2 = ξ27 + ξ−2
7 and η2 = ξ37 + ξ−3

7

the second and the third roots of f(x). The symbol N(α) will denote the norm

of any element α ∈ K with respect to Q; that is the product of all algebraic

conjugates of α.

3. The Algorithm

Let us fix n = 7 or n = 14. We describe an algorithm which generates primes

p and q such that q divides Φn(p). The algorithm consists of the three following

procedures.

Procedure FindPrimeQ(k, l,m). Let us fix k, l,m ∈ Z, (k, l,m) = 1, |N(k +

lη1 +mη2)| ≡ 15 (mod 28), where k + lη1 +mη2 ∈ OK . This procedure finds

a + bη1 + cη2 ∈ OK , where a ≡ k (mod 28), b ≡ l (mod 28), c ≡ m (mod 28)

such that |N(a+ bη1 + cη2)| = q is a prime.
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Generating elements of . . . 115

(1) Choose a+bη1+cη2 at random in OK such that a ≡ k (mod 28), b ≡ l

(mod 28), c ≡ m (mod 28).

(2) Compute q = |N(a + bη1 + cη2)|. If q is a prime, then terminate the

procedure. Otherwise go to step 1.

(3) Return a, b, c and q.

Procedure FindRootOfFModQ(a, b, q). Let n = 7 or n = 14. Given a prime

q and a, b, c such that q = |N(a + bη1 + cη2)| ≡ 15 (mod 28), this procedure

computes r a root of Φn(x) modulo q.

(1) Compute A ≡ (−b2+2c2+a2+2ab−3ac−4cb) (mod q). If (A, q) = 1,

then B = b2 + 2c2 + 2ab− ac− 3cb and go to step 3. Otherwise go to

step 2.

(2) Compute A ≡ (−a2+2ac+cb) (mod q) and B = −a2+c2+ab+ac−bc.

(3) Compute s ≡ (−B)A−1 (mod q).

(4) Compute t ≡ (s2 − 4)(q+1)/4 (mod q)

(5) Compute w ≡ (s− t)2−1 (mod q)

(6) If n = 7, then r = w. If n = 14, then r ≡ −w (mod q).

(7) Return r.

Procedure FindPrimeP(r, q). Given a prime q and r < q, this procedure finds

a prime p ≡ r (mod q).

(1) Choose randomly v ∈ N .

(2) Compute p = qv + r. If p is a prime, then terminate the procedure.

Otherwise go to step 1.

(3) Return p.

Algorithm 1. Generating primes p and q, such that q|Φn(p)

Input: k, l,m ∈ N : (k, l,m) = 1, |N(k+ lη1 +mη2)| ≡ 15 (mod 28), n = 7 or n = 14.

Output:Primes p and q such that q|Φn(p).

1 FindPrimeQ(k, l, x);

2 FindRootModuloQ(a, b, c, q, n);

3 FindPrimeP(r, q);

4 Return p, q;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/01/2026 23:36:50

UM
CS



116 Maciej Grześkowiak

4. Correctness of the Algorithm

Theorem 1. Let us fix n = 7 or n = 14. Then Algorithm 1 generates

primes p and q such that q divides Φn(p).

Proof. We begin by proving auxiliary lemmas.

Lemma 1. Let ξ7 be a primitive 7th root of unity and let f(x) = x3 + x2 −
2x− 1 ∈ Z[x]. Then f(x) is the minimal polynomial of ηi = ξi7 + ξ−i

7 .

Proof. A short computation shows that

f(x) = (x− η1)(x− η2)(x− η3) =

= x3 − (η1 + η2 + η3)x
2 + (η1η2 + η1η3 + η2η3)x− η1η2η3.

We shall compute the coefficients of f(x). We have

Φ7(ξ7) = ξ67 + ξ57 + ξ47 + ξ37 + ξ27 + ξ7 + 1 = 0,

dividing by ξ37 we obtain

ξ37 + ξ27 + ξ7 + 1 + ξ−1
7 + ξ−2

7 + ξ−3
7 = 0.

Thus

η1 + η2 + η3 = −1. (1)

A small computation yields

η1η2 = (ξ7 + ξ−1
7 )(ξ27 + ξ−2

7 ) = ξ37 + ξ−1
7 + ξ7 + ξ−3

7 = η3 + η1,

so

η1η2η3 = η23 + η1η3 = η1 + 2 + η1η3 = 2 + η1 + η2 + η3 = 1. (2)

Likewise,

η1η2 + η1η3 + η2η3 = 2(η1 + η2 + η3) = −2. (3)

Note that ηj = e2jπi/7 + e−2jπi/7 ∈ R, so f(x) is the minimal polynomial of ηi.

This finishes the proof. �

Lemma 2. Let α = a + bη1 + cη2 ∈ OK , where ηi = ξi7 + ξ−i
7 , i = 1, 2 .

Then

N(α) = a3 + b3 + c3 − a2b− a2c− 2b2a+ 3b2c− 2c2a− 4c2b+ 3abc.
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Generating elements of . . . 117

Proof. We have

N(α) = (a+ bη1 + cη2)(a+ bη2 + cη3)(a+ bη3 + cη1)

= a3 + (b3 + c3)(η1η2η3) + (a2b+ a2c)(η1 + η2 + η3) +

+ (b2a+ c2a)(η1η2 + η1η3 + η2η3) + b2c(η21η2 + η1η
2
3 + η22η3) +

+ c2b(η1η
2
2 + η21η3 + η2η

2
3) + abc(η1η2 + η1η3 + η2η3 + η21 + η22 + η23),

where η3 = ξ37 + ξ−3
7 . A short computation shows that

η2i = ηi+1 mod 3 + 2,

and so

η21η2 + η1η
2
3 + η22η3 = 3(η1 + η2 + η3) + 6

and

η1η
2
2 + η21η3 + η2η

2
3 = η1η2 + η1η3 + η2η3 − 2(η1 + η2 + η3).

By the above and (1), (2), (3), the assertion follows. This finishes the proof. �

For any integers a, b, c we define the numbers

A1 = −b2 + 2c2 + a2 + 2ab− 3ac− 4cb, B1 = b2 + 2c2 + 2ab− ac− 3cb,

A2 = −a2 + 2ac+ cb, B2 = −a2 + c2 + ab+ ac− bc,

A3 = a2 − b2 + c2 + ab− 2ac− 2bc, B3 = c2 + ab− ac− 2bc,

C1 = a2 − 3b2 − c2 − ab+ 2ac+ 4bc, D1 = −b2 − c2 − ab+ 2ac+ 3bc,

C2 = −a2 + 2b2 − bc, D2 = b2 − a2 + ac,

C3 = a2 − 2b2 − c2 − ab+ ac+ 3bc, D3 = −b2 + ac+ bc

E1 = a2 − 4b2 + c2 + ab+ ac+ bc, F1 = −b2 + c2 + ab− bc,

E2 = −a2 − b2 − bc+ ab, F2 = −a2 + 2ab+ bc,

E3 = a2 − 2b2 − 2c2 − 2ab+ 2ac+ 5bc, F3 = −c2 + ab+ ac+ 2bc.

(4)

With the notation as above

Lemma 3. Let α = a+ bη1 + cη2 ∈ OK , where |N(α)| is a prime. Assume

that, there exists β ∈ OK , β = r + (−r − 1)η1 + rη2, where r ∈ Z such

that N(α) divides N(β). Then rAi + Bi ≡ 0 (mod |N(α)|) or rCi + Di ≡ 0

(mod |N(α)|) or rEi+Fi ≡ 0 (mod |N(α)|), where i = 1, 2, 3. Moreover, there

exists j, k ∈ {1, 2, 3}, j ̸= k such that the numbers Aj, Ak, Cj, Ck, Ej, Ek are

prime to N(α).

Proof. Let N(β) = β1β2β3, where β = β1 and βi are all algebraic con-

jugates of β. Since |N(α)| is a prime, hence α is a prime element of OK and

hence α|β1 or α|β2 or α|β3, so we have three cases.
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Case I: α|β1. Hence, there exists γ ∈ OK , γ = x + yη1 + zη2, x, y, z ∈ Z such

that

(a+ bη1 + cη2)(x+ yη1 + zη2) = r + (−r − 1)η1 + rη2.

Hence we can consider the linear system of equations
ax+ (2b− c)y + (c− b)z = r,

bx+ ay − cz = −r − 1,

cx+ (b− c)y + (a− b− c)z = r,

(5)

which in the matrix form is

MX = R,

where

M =

 a 2b− c c− b

b a −c

c b− c a− b− c

 , X =

 x

y

z

 , R =

 r

−r − 1

r

 .

We shall show that the matrix M is invertible. Let’s compute detM . We have

detM = adetM11 + (c− 2b) detM12 + (c− b) detM13.

A short computation shows that

detM11 = a2 − ab− ac+ bc− c2,

detM12 = −b2 + c2 + ab− bc,

detM13 = b2 − ac− bc,

and so

detM = a3 + b3 + c3 − a2b− a2c− 2b2a+ 3b2c− 2c2a− 4c2b+ 3abc.

By (2) we obtain detM = N(α) ̸= 0. This proves the last claim. Hence x, y

and z can be found with the Cramer’s rule as

x =
detM1

detM
, y =

detM2

detM
, z =

detM3

detM
,

where Mi is the matrix formed by replacing the ith column of M by the column

vector R. It is an elementary check that

x =
1

N(α)
(rA1 +B1),

y =
1

N(α)
(rA1 +B2), (6)

z =
1

N(α)
(rA3 +B3),
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Generating elements of . . . 119

where Ai and Bi are defined by (4). Since x, y, x ∈ Z, so by (6)

rA1 +B1 ≡ 0 (mod |N(α)|),
rA2 +B2 ≡ 0 (mod |N(α)|), (7)

rA3 +B3 ≡ 0 (mod |N(α)|).

This proves the first assertion of the lemma for this case. We shall prove the

second assertion of the lemma for this case. Firstly, we shall show that at least

one of the numbers Ai is not divided by N(α). A short calculation shows that

N(α)2 = N(a+ bη1 + cη2) =

= (a3 + b3 + c3 − a2b− a2c− 2b2a+ 3b2c− 2c2a− 4c2b+ 3abc)2

= N(A1 +A2η1 +A3η2).

Now, assume that N(α) divides the numbers Ai simultaneously. Then

N(A1 +A2η1 +A3η2) = kN(α)3, k ∈ Z,

but this contradicts the fact that N(A1 + A2η1 + A3η2) = N(α)2. This proves

the last claim. Secondly, we shall show that at least two of the numbers Ai are

not divided by N(α). Without loss of generality we can assume that N(α) does

not divide A1. Then we have

N(α)2 = N(A1 +A2η1 +A3η2) = A3
1 + kN(α), k ∈ Z,

and hence N(α)|A1, which is a contradiction. This proves the last claim and

the second assertion holds.

Case II: α|β2. A short computation shows that α = a− b+ (c− b)η2 − bη3. If

α|β2, then there exists γ ∈ OK , γ = x+ yη2 + zη3, x, y, z ∈ Z such that

(a− b+ (c− b)η2 − bη3)(x+ yη1 + zη2) = r + (−r − 1)η2 + rη3.

Hence we can consider the linear system of equations
(a− b)x+ (2c− b)y − cz = r,

(c− b)x+ (a− b)y + bz = −r − 1,

−bx+ cy + (a+ b− c)z = r,

(8)

which in the matrix form is

M =

 a− b 2c− b −c

c− b a− b b

−b c a+ b− c

 , X =

 x

y

z

 , R =

 r

−r − 1

r

 .

Hence

MX = R.
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We shall show that the detM = N(α) ̸= 0. We have

detM = (a− b) detM11 + (b− 2c) detM12 − c detM13.

A short computation shows that

detM11 = a2 − ac− b2,

detM12 = −c2 + a(c− b) + 2bc,

detM13 = c2 + b(a− c)− b2,

and so

detM = a3 + b3 + c3 − a2b− a2c− 2b2a+ 3b2c− 2c2a− 4c2b+ 3abc.

By (2) we obtain detM = N(α) ̸= 0. This proves the last claim. Hence x, y, z

can be found with the Cramer’s rule as

x =
detM1

detM
, y =

detM2

detM
, z =

detM3

detM
,

where Mi is the matrix formed by replacing the ith column of M by the column

vector R. It is an elementary check that

x =
1

N(α)
(rC1 +D1),

y =
1

N(α)
(rC2 +D2), (9)

z =
1

N(α)
(rC3 +D3),

where Ci and Di are defined by (4). Since x, y, x ∈ Z, so by (9)

rC1 +D1 ≡ 0 (mod |N(α)|),
rC2 +D2 ≡ 0 (mod |N(α)|), (10)

rC3 +D3 ≡ 0 (mod |N(α)|).

This proves the first assertion of the lemma for this case. We shall prove the

second assertion of the lemma for this case. Firstly, we shall show that at least

one of the numbers Ci is not divided by N(α). Similarly to the case I, a short

calculation shows that

N(α)2 = N(C1 + C2η1 + C3η2).

Now, assume that N(α) divides the numbers Ci simultaneously. Then

N(C1 + C2η1 + C3η2) = kN(α)3, k ∈ Z,

but this contradicts the fact that N(C1 + C2η1 + C3η2) = N(α)2. This proves

the last claim. Secondly, we shall show that at least two of the numbers Ci are
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Generating elements of . . . 121

not divided by N(α). Without loss of generality we can assume that N(α) does

not divide C1. Then we have

N(α)2 = N(C1 + C2η1 + C3η2) = C3
1 + kN(α), k ∈ Z,

and hence N(α)|C1, which is a contradiction. This proves the last claim and

the second assertion holds.

Case III: α|β3. A short computation shows that α = a− c+ (b− c)η1 − cη3. If

α|β2, then there exists γ ∈ OK , γ = x+ yη2 + zη3, x, y, z ∈ Z such that

(a− c+ (b− c)η1 − cη3)(x+ yη1 + zη3) = r + (−r − 1)η1 + rη3.

Hence we can consider the linear system of equations
(a− c)x+ by − (c+ b)z = r,

(b− c)x+ (a− b+ c)y − bz = −r − 1,

−cx+ (c− b)y + (a− c)z = r,

(11)

which in the matrix form is

M =

 a− c b −c− b

b− c a− b+ c −b

−c c− b a− c

 , X =

 x

y

z

 , R =

 r

−r − 1

r

 .

Hence

MX = R.

We shall show that the detM = N(α) ̸= 0. We have

detM = (a− c) detM11 − bdetM12 − (c+ b) detM13.

A short computation shows that

detM11 = a2 − b2 − c2 − ab+ 2bc,

detM12 = −c2 + a(b− c)− 2bc,

detM13 = b2 + ac+ bc,

and so

detM = a3 + b3 + c3 − a2b− a2c− 2b2a+ 3b2c− 2c2a− 4c2b+ 3abc.

By (2) we obtain detM = N(α) ̸= 0. Hence x, y and z can be found with the

Cramer’s rule as

x =
detM1

detM
, y =

detM2

detM
, z =

detM3

detM
,
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where Mi is the matrix formed by replacing the ith column of M by the column

vector R. It is an elementary check that

x =
1

N(α)
(rE1 + F1),

y =
1

N(α)
(rE2 + F2), (12)

z =
1

N(α)
(rE3 + F3),

where Ei and Fi are defined by (4). Since x, y, x ∈ Z, so by (12)

rE1 + F1 ≡ 0 (mod |N(α)|),
rE2 + F2 ≡ 0 (mod |N(α)|), (13)

rE3 + F3 ≡ 0 (mod |N(α)|).

This proves the first assertion of the lemma for this case. We shall prove the

second assertion of the lemma for this case. Firstly, we shall show that at least

one of the numbers Ei is not divided by N(α). Similarly to cases I, II, a short

calculation shows that

N(α)2 = N(E1 + E2η1 + E3η2).

Now, assume that N(α) divides the numbers Ei simultaneously. Then

N(E1 + E2η1 + E3η2) = kN(α)3, k ∈ Z,

but this contradicts the fact that N(E1 + E2η1 + E3η2) = N(α)2. This proves

the last claim. Secondly, we shall show that at least two of the numbers Ei are

not divided by N(α). Without loss of generality we can assume that N(α) does

not divide A. Then we have

N(α)2 = N(E1 + E2η1 +E3η2) = E3
1 + kN(α), k ∈ Z,

and hence N(α)|E1, which is a contradiction. This proves the last claim and

the second assertion holds. This finishes the proof. �

Lemma 4. Let q ≡ ±1 (mod 7) be a prime. Then the congruence

f(r) = r3 + r2 − 2r − 1 ≡ 0 (mod q) (14)

is solvable.

Proof. By Lemma 1 f(x) is the minimal polynomial of ηi = ξ7 + ξ−i
7 ,

i = 1, 2, 3. Let K = Q(n1) be the algebraic number field with the ring of

integer OK , so Q ⊂ K is the Galois extension. Let p be a prime not dividing

∆(f) discriminant of f , that is p ̸= 7. The congruence f(x) ≡ 0 (mod p) has
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Generating elements of . . . 123

a solution in Z if and only if the ideal pOK splits completely in K (see [6],

Proposition 5.11, page 102). Let p be a prime ideal of K containing pOK then

pOK splits completely in K if and only if the symbol Artin
(
K/Q
p

)
= 1 (see [6],

Corollary 5.21, page 107). We shall compute(
K/Q

p

)
(α), α = αp ≡ a+ bη1 + cη2 ∈ OK .

We have (
K/Q

p

)
(α) ≡ αp ≡ a+ bηp1 + cηp2 (mod p).

On the other hand

ηpi = ξip7 + ξ−ip
7 =


ξi7 + ξ−i

7 = ηi, for p ≡ ±1 (mod 7)

ξ2i7 + ξ−2i
7 = ηi+1, for p ≡ ±2 (mod 7)

ξ3i7 + ξ−3i
7 = ηi+2, for p ≡ ±3 (mod 7)

,

where i = 1, 2, 3. Hence(
K/Q

p

)
(α) ≡ α (mod p), for p ≡ ±1 (mod 7),

and consequently the solution of (14) exists. This finishes the proof. �

Lemma 5. Let α = a + bη1 + cη2 ∈ OK , where |N(α)| ≡ ±1 (mod 7) and

assume that |N(α)| is a prime. Then the congruence

f(r) = r3 + r2 − 2r − 1 ≡ 0 (mod q) (15)

is solvable and the solutions ri, i = 1, 2, 3 satisfy

r1A1 ≡ −B1 (mod |N(α)|) or r1A2 ≡ −B2 (mod |N(α)|),
r2C1 ≡ −D1 (mod |N(α)|) or r2C2 ≡ −D2 (mod |N(α)|),
r3E1 ≡ −F1 (mod |N(α)|) or r3E2 ≡ −F2 (mod |N(α)|),

where Aj , Bj , Cj , Dj , Ej , Fj are defined by (4). Moreover, at least one of the

numbers Aj, and at least one of Cj, and at least one of Ej is prime to N(α).

Proof. Let ηi = ξi7 + ξ−i
7 . By Lemma 4 solution of (15) exists and so by

(1) ηi modulo |N(α)| exists. We have

0 ≡ r3i + r2i − 2ri − 1 (mod |N(α)|)
≡ (r − (r + 1)η1 + rη2)(r − (r + 1)η2 + rη3)(r − (r + 1)η3 + rη1) (mod |N(α)|)
≡ N(β) (mod |N(α)|),

where β = (r− (r+1)η1 + rη2) (mod |N(α)|). Hence N(α)|N(β). Since β can

be considered as an element of OK , then Lemma 3 shows that the assertion of

the Lemma follows. This finishes the proof. �
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Proof of Theorem 1. Let us assume that a, b, c and q are the output

of procedure FindPrimeQ. Then q ≡ 15 (mod 28) is a prime such that q =

|N(a+ bη1 + cη2)| and a ≡ k (mod 28), b ≡ l (mod 28), c ≡ m (mod 28). We

shall show that the procedure FindRootModuloQ, with the input a, b, c, q

and n = 7 or 14, computes r such that Φn(r) ≡ 0 (mod q). Firstly, suppose

that n = 7. It is an elementary check that q ≡ 1 (mod 7). Lemma 5 shows

that the solutions si of f(x) = x3 + x2 − 2x − 1 ≡ (mod q) exists and one of

them s = s1 satisfy

sA1 ≡ −B1 (mod |N(α)|) and sA2 ≡ −B2 (mod |N(α)|),

and at least one of the numbers A1, A2 is prime to q. Without loss of gener-

ality we can assume that (A, q) = 1, where A = A1 and hence s ≡ (−B)A−1

(mod q), where B = B1. By Lemma 1, s ≡ ξ7 + ξ−1
7 (mod q) or s ≡ ξ27 + ξ−2

7

(mod q) or s ≡ ξ37 + ξ−3
7 (mod q). Note that ξi7, ξ

−i
7 , i = 1, 2, 3 are the roots

of g(x) = x2 − sx + 1 (mod q) and one of them is equal to (s +
√

(s2 − 4))/2

(mod q). We shall show that s2 − 4 is a quadratic residue modulo q. Indeed,

q ≡ 1 (mod 7), so ξ7 modulo q exists, and hence ξ7 ∈ Fq. Suppose that s2 − 4

is the quadratic nonresidue modulo q, then g(x) is the irreducible modulo q,

and so ξ7 ∈ Fq2\Fq. This contradicts the fact that ξ7 ∈ Fq. Consequently,

(s+
√

(s2 − 4))/2 (mod q) can be computed. Now, since q ≡ 3 (mod 4), then

computing a square root of s2−4 modulo q reduces to performing the exponenti-

ation modulo q. Let t be the square root of s2−4 (mod q), so t ≡ (s2−4)(q+1)/4

(mod q). Hence ξi7 or ξ
−i
7 is equal to (s−t)/2 (mod q), and putting r ≡ (s−t)/2

(mod q) we obtain Φ7(r) ≡ 0 (mod q). Finally, suppose that n = 14. We have

Φ7(x) = Φ14(−x), so Φ14(−r) ≡ 0 (mod q). We have shown that the pro-

cedure FindRootModuloQ finds the root r of Φn(x) modulo q. Now, let

us assume that the procedure FindPrimeQ returns a prime p ≡ r (mod q).

Hence Φn(p) ≡ Φn(r) (mod q) and so q|Φn(p). This finishes the proof. �

5. Conclusions

Let a, b, c be the integers such that q = |N(a + bη1 + cη2)| ≡ 15 (mod 28)

is a prime. In this paper we have introduced a deterministic algorithm for

computing primitive 7th and 14th roots of unity in Fq using O((log q)3) bit

operations. Given such a root of unity and q we can easily find a prime p

such that q divides Φ7(p) or Φ14(p). Such primes are key parameters for the

cryptosystem based on 7th or 14th order characteristic sequences.
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